122.买卖股票的最佳时机II ,55. 跳跃游戏 ,45.跳跃游戏II

简介: **简介:**本文介绍了三道经典算法题的解法,涵盖贪心算法的核心思想与应用。 1. **买卖股票的最佳时机 II**:通过收集每天的正利润实现最大收益,局部最优推导全局最优。 2. **跳跃游戏**:利用贪心算法扩展覆盖范围,判断是否能到达终点。 3. **跳跃游戏 II**:基于最大覆盖范围计算最小跳跃次数,平衡当前步与下一步的覆盖距离。 三道题目均采用贪心策略,通过优化局部选择实现整体最优解,代码简洁高效,时间复杂度低,适合解决类似问题。

 题目:122. 买卖股票的最佳时机 II

给你一个整数数组 prices ,其中 prices[i] 表示某支股票第 i 天的价格。

在每一天,你可以决定是否购买和/或出售股票。你在任何时候 最多 只能持有 一股 股票。你也可以先购买,然后在 同一天 出售。

返回 你能获得的 最大 利润 。

示例 1:

输入:prices = [7,1,5,3,6,4]

输出:7

解释:在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5 - 1 = 4 。

    随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6 - 3 = 3 。

    总利润为 4 + 3 = 7 。

示例 2:

输入:prices = [1,2,3,4,5]

输出:4

解释:在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5 - 1 = 4 。

    总利润为 4 。

示例 3:

输入:prices = [7,6,4,3,1]

输出:0

解释:在这种情况下, 交易无法获得正利润,所以不参与交易可以获得最大利润,最大利润为 0 。

提示:

1 <= prices.length <= 3 * 104

0 <= prices[i] <= 104

思考历程与知识点:  

我们需要收集每天的正利润就可以,收集正利润的区间,就是股票买卖的区间,而我们只需要关注最终利润,不需要记录区间。

那么只收集正利润就是贪心所贪的地方!

局部最优:收集每天的正利润,全局最优:求得最大利润。

局部最优可以推出全局最优,找不出反例,试一试贪心

题解:

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int result = 0;
        for (int i = 1; i < prices.size(); i++) {
            result += max(prices[i] - prices[i - 1], 0);
        }
        return result;
    }
};

 题目:55. 跳跃游戏

给定一个非负整数数组 nums ,你最初位于数组的 第一个下标 。

数组中的每个元素代表你在该位置可以跳跃的最大长度。

判断你是否能够到达最后一个下标。

示例 1:

输入:nums = [2,3,1,1,4]

输出:true

解释:可以先跳 1 步,从下标 0 到达下标 1, 然后再从下标 1 跳 3 步到达最后一个下标。

示例 2:

输入:nums = [3,2,1,0,4]

输出:false

解释:无论怎样,总会到达下标为 3 的位置。但该下标的最大跳跃长度是 0 , 所以永远不可能到达最后一个下标。

提示:

1 <= nums.length <= 3 * 104

0 <= nums[i] <= 105

思考历程与知识点:  

贪心算法局部最优解:每次取最大跳跃步数(取最大覆盖范围),整体最优解:最后得到整体最大覆盖范围,看是否能到终点。

题解:

class Solution {
public:
    bool canJump(vector<int>& nums) {
        int cover = 0;
        if (nums.size() == 1) return true; // 只有一个元素,就是能达到
        for (int i = 0; i <= cover; i++) { // 注意这里是小于等于cover
            cover = max(i + nums[i], cover);
            if (cover >= nums.size() - 1) return true; // 说明可以覆盖到终点了
        }
        return false;
    }
};

 题目:45. 跳跃游戏 II

给定一个长度为 n 的 0 索引整数数组 nums。初始位置为 nums[0]。

每个元素 nums[i] 表示从索引 i 向前跳转的最大长度。换句话说,如果你在 nums[i] 处,你可以跳转到任意 nums[i + j] 处:

0 <= j <= nums[i]  

i + j < n

返回到达 nums[n - 1] 的最小跳跃次数。生成的测试用例可以到达 nums[n - 1]。

示例 1:

输入: nums = [2,3,1,1,4]

输出: 2

解释: 跳到最后一个位置的最小跳跃数是  

2

    从下标为 0 跳到下标为 1 的位置,跳  

1

步,然后跳  

3

步到达数组的最后一个位置。

示例 2:

输入: nums = [2,3,0,1,4]

输出: 2

提示:

1 <= nums.length <= 104

0 <= nums[i] <= 1000

题目保证可以到达 nums[n-1]

思考历程与知识点:  

本题相对于55.跳跃游戏 (opens new window)还是难了不少。

但思路是相似的,还是要看最大覆盖范围。

本题要计算最小步数,那么就要想清楚什么时候步数才一定要加一呢?

贪心的思路,局部最优:当前可移动距离尽可能多走,如果还没到终点,步数再加一。整体最优:一步尽可能多走,从而达到最小步数。

思路虽然是这样,但在写代码的时候还不能真的能跳多远就跳多远,那样就不知道下一步最远能跳到哪里了。

所以真正解题的时候,要从覆盖范围出发,不管怎么跳,覆盖范围内一定是可以跳到的,以最小的步数增加覆盖范围,覆盖范围一旦覆盖了终点,得到的就是最小步数!

这里需要统计两个覆盖范围,当前这一步的最大覆盖和下一步最大覆盖。

如果移动下标达到了当前这一步的最大覆盖最远距离了,还没有到终点的话,那么就必须再走一步来增加覆盖范围,直到覆盖范围覆盖了终点。

题解:

class Solution {
public:
    int jump(vector<int>& nums) {
        if (nums.size() == 1) return 0;
        int curDistance = 0;    // 当前覆盖最远距离下标
        int ans = 0;            // 记录走的最大步数
        int nextDistance = 0;   // 下一步覆盖最远距离下标
        for (int i = 0; i < nums.size(); i++) {
            nextDistance = max(nums[i] + i, nextDistance);  // 更新下一步覆盖最远距离下标
            if (i == curDistance) {                         // 遇到当前覆盖最远距离下标
                ans++;                                  // 需要走下一步
                curDistance = nextDistance;             // 更新当前覆盖最远距离下标(相当于加油了)
                if (nextDistance >= nums.size() - 1) break;  // 当前覆盖最远距到达集合终点,不用做ans++操作了,直接结束
            }
        }
        return ans;
    }
};


目录
打赏
0
0
0
0
59
分享
相关文章
软考软件评测师——计算机组成与体系结构(分级存储架构)
本内容全面解析了计算机存储系统的四大核心领域:虚拟存储技术、局部性原理、分级存储体系架构及存储器类型。虚拟存储通过软硬件协同扩展内存,支持动态加载与地址转换;局部性原理揭示程序运行特性,指导缓存设计优化;分级存储架构从寄存器到外存逐级扩展,平衡速度、容量与成本;存储器类型按寻址和访问方式分类,并介绍新型存储技术。最后探讨了存储系统未来优化趋势,如异构集成、智能预取和近存储计算等,为突破性能瓶颈提供了新方向。
软考软件测评师大题——案例分析之白盒测试
历年下午案例试题一固定考察白盒测试,主要包含三大核心问题:推导逻辑条件、绘制控制流图及计算环路复杂度、确定线性无关路径集合。内容涵盖覆盖层级标准(语句、分支、判定、条件覆盖等)、控制流图构建规范(顺序、分支、循环结构转换原则)、环路复杂度计算公式以及线性无关路径生成方法。通过典型题型示例解析,如代码路径分析与验证指标,帮助考生掌握解题思路和技巧。
104.二叉树的最大深度 , 111.二叉树的最小深度,222.完全二叉树的节点个数
本内容主要讲解了三道与二叉树相关的算法题及其解法,包括“二叉树的最大深度”、“二叉树的最小深度”和“完全二叉树的节点个数”。通过递归方法(前序或后序遍历)实现求解。 - **最大深度**:利用后序遍历计算根节点到最远叶子节点的路径长度。 - **最小深度**:同样采用后序遍历,但需特别处理单子树为空的情况,确保找到从根到最近叶子节点的路径。 - **完全二叉树节点数**:基于递归后序遍历统计左右子树节点数量并累加。 代码示例清晰展示了递归逻辑,帮助理解二叉树深度与高度的概念及其实现方式。
阿里云事件总线 EventBridge 正式商业化,构建智能化时代的企业级云上事件枢纽
阿里云事件总线EventBridge自2020年发布以来,致力于构建统一的事件枢纽,支持微服务架构演进。其核心特性包括稳定安全、高性能低成本、开放集成及统一事件标准,适用于EDA、流式ETL、AI数据集成等多种场景。EventBridge于2025年6月3日正式商业化,提供灵活计费模式,包括事件量和CU配额计费,帮助企业高效实现松耦合、分布式的事件驱动架构。
669. 修剪二叉搜索树 ,108.将有序数组转换为二叉搜索树 , 538.把二叉搜索树转换为累加树
1. **修剪二叉搜索树(669号题)**:通过递归方法,移除值不在指定范围 `[low, high]` 内的节点,同时保持树中剩余节点的相对结构不变。核心思想是根据当前节点值与边界的关系决定保留左子树还是右子树。 2. **将有序数组转换为二叉搜索树(108号题)**:将一个升序排列的数组转化为一棵高度平衡的二叉搜索树。采用分治法,选取数组中间元素作为根节点,递归构建左右子树。即使数组长度为偶数,选择任一中间值均可满足条件。 3. **把二叉搜索树转换为累加树(538号题)**:通过修改二叉搜索树中每个节点的值,使其等于原树中所有大于或等于该节点值的和。
455.分发饼干 ,376. 摆动序列 , 53. 最大子序和
**简介:** 本文介绍了三道经典的算法题及其解法,涵盖贪心算法、动态规划等重要思想。第一题“分发饼干”通过贪心策略,将大尺寸饼干优先分配给胃口大的孩子,实现满足最多孩子的目标。第二题“摆动序列”利用差值变化判断峰值,统计最长摆动子序列长度,需处理平坡与边界情况。第三题“最大子数组和”采用动态规划思想,在局部最优中寻找全局最大连续子数组和。三道题目均附有详细解析与C++代码实现,帮助理解算法核心逻辑与实现细节。
HTTP2.0 从原理到实践,保证把你治得服服帖帖!
HTTP/2 是 HTTP/1.1 的重要升级,通过多路复用、头部压缩、服务器推送等特性显著提升性能与效率。本文详细解析了 HTTP/2 的优势、配置方法及实际应用,涵盖 Nginx/Apache/IIS 配置、curl 测试工具使用,并对比 HTTP/1.1 指出其优化点。同时提醒需注意 HTTPS 支持、客户端兼容性等问题,助你高效掌握并运用 HTTP/2 技术。
150 5
HTTP2.0 从原理到实践,保证把你治得服服帖帖!
【赵渝强老师】Docker的图形化管理工具
本文介绍了三种主流的Docker图形化管理工具:Docker UI、Portainer和Shipyard。Docker UI(现名UI for Docker)适合初学者,支持容器管理并可显示容器关系图;Portainer轻量级且功能全面,支持单机与集群管理;Shipyard专注于多主机集群管理,提供镜像、容器及节点管理功能,并包含engine和rethinkdb两个核心组件。文中还通过图文结合的方式展示了各工具的安装与使用方法。
114 4
【赵渝强老师】Docker的图形化管理工具
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问