Android 3D效果的实现

简介: 本文详细讲解了如何在Android中实现3D效果,基于官方Demo并结合实际需求进行调整。通过传感器(Sensor)获取设备旋转数据,利用OpenGL ES绘制3D立方体,实现了动态旋转的视觉效果。文章分为需求分析、效果展示、实现步骤及源码解析,涵盖传感器注册与注销、OpenGL核心方法使用等内容,适合初学者学习参考。文末附完整代码,便于实践操作。

系列文章目录

Android 3D效果的实现

前言

前几天有粉丝要求计蒙写一个3d效果的简单教程,其实这个在Android官方demo中是有的,可能对于新手而言看不太明白,于是根据本人自己的理解来写一个教程,并改成粉丝要求的样子。

文章最后将会贴出源码(照顾新手附加注释),欢迎留言。

一、先看看聊天(需求)

二、实现效果

三.实现

前五步传感器内容。

1.通过getSystemService获得SensorManager实例对象

mSensorManager = (SensorManager)context.getSystemService(SENSOR_SERVICE);
AI 代码解读

2.通过SensorManager实例对象获得想要的传感器对象:参数决定获取哪个传感器

 mRotationVectorSensor = mSensorManager.getDefaultSensor(
                Sensor.TYPE_ROTATION_VECTOR);
AI 代码解读

3.在获得焦点时注册传感器并让本类实现SensorEventListener接口

 mSensorManager.registerListener(this, mRotationVectorSensor, 10000);
AI 代码解读
  • 第一个参数:SensorEventListener接口的实例对象
  • 第二个参数:需要注册的传感器实例
  • 第三个参数:传感器获取传感器事件event值频率:
    SensorManager.SENSOR_DELAY_FASTEST = 0:对应0微秒的更新间隔,最快,1微秒 = 1 % 1000000秒
    SensorManager.SENSOR_DELAY_GAME = 1:对应20000微秒的更新间隔,游戏中常用
    SensorManager.SENSOR_DELAY_UI = 2:对应60000微秒的更新间隔
    SensorManager.SENSOR_DELAY_NORMAL = 3:对应200000微秒的更新间隔
    键入自定义的int值x时:对应x微秒的更新间隔

4.必须重写的两个方法:onAccuracyChanged,onSensorChanged

  • onSensorChanged: 传感器事件值改变时的回调接口:执行此方法的频率与注册传感器时的频率有关.
  • onAccuracyChanged:传感器精度发生改变的回调接口

5.在失去焦点时注销传感器(为Activity提供调用)

    public void stop() {
   
        mSensorManager.unregisterListener(this);
    }
AI 代码解读

6.draw方法中的方发详解,本案例(opengl坐标系中采用的是3维坐标)

  • glEnable:启用服务器端GL功能。
  • glFrontFace:定义多边形的正面和背面。多边形正面的方向。GL_CW和GL_CCW被允许,初始值为GL_CCW。
  • glShadeModel:选择恒定或光滑着色模式。GL图元可以采用恒定或者光滑着色模式,默认值为光滑着色模式。当图元进行光栅化的时候,将引起插入顶点颜色计算,不同颜色将被均匀分布到各个像素片段。允许的值有GL_FLAT 和GL_SMOOTH,初始值为GL_SMOOTH。
  • glVertexPointer:定义一个顶点坐标矩阵。(后续源码中会贴上各个参数以及需要注意的地方)。
  • glColorPointer:定义一个颜色矩阵。size指明每个颜色的元素数量,必须为4。type指明每个颜色元素的数据类型,stride指明从一个颜色到下一个允许的顶点的字节增幅,并且属性值被挤入简单矩阵或存储在单独的矩阵中(简单矩阵存储可能在一些版本中更有效率)。
  • glDrawElements:由矩阵数据渲染图元

更多建议参考Android官方文档。

四.需求中的青黄色参数

            final float colors[] = {
   
                      0,  1,  1,  1,  1,  1,  1,  1,
                      1,  1,  0,  1,  1,  1,  1,  1,
                      1,  1,  1,  1,  0,  1,  1,  1,
                      1,  1,  1,  1,  1,  1,  0,  1,
            };
AI 代码解读

五.源码

TdRenderer.java

public class TdRenderer implements GLSurfaceView.Renderer, SensorEventListener {
   
    //传感器
    private SensorManager mSensorManager;
    private Sensor mRotationVectorSensor;
    private Cube mCube;

    private final float[] mRotationMatrix = new float[16];

    public TdRenderer(Context context) {
   
        //第一步:通过getSystemService获得SensorManager实例对象
        mSensorManager = (SensorManager)context.getSystemService(SENSOR_SERVICE);
        //第二步:通过SensorManager实例对象获得想要的传感器对象:参数决定获取哪个传感器
        mRotationVectorSensor = mSensorManager.getDefaultSensor(
                Sensor.TYPE_ROTATION_VECTOR);

        mCube = new Cube();
        mRotationMatrix[ 0] = 1;
        mRotationMatrix[ 4] = 1;
        mRotationMatrix[ 8] = 1;
        mRotationMatrix[12] = 1;
    }
   // 第三步:在获得焦点时注册传感器并让本类实现SensorEventListener接口
    public void start() {
   
        /*
         *第一个参数:SensorEventListener接口的实例对象
         *第二个参数:需要注册的传感器实例
         *第三个参数:传感器获取传感器事件event值频率:
         *    SensorManager.SENSOR_DELAY_FASTEST = 0:对应0微秒的更新间隔,最快,1微秒 = 1 % 1000000秒
         *    SensorManager.SENSOR_DELAY_GAME = 1:对应20000微秒的更新间隔,游戏中常用
         *    SensorManager.SENSOR_DELAY_UI = 2:对应60000微秒的更新间隔
         *    SensorManager.SENSOR_DELAY_NORMAL = 3:对应200000微秒的更新间隔
         *    键入自定义的int值x时:对应x微秒的更新间隔
         *
         */
        mSensorManager.registerListener(this, mRotationVectorSensor, 10000);
    }
    //第四步:必须重写的两个方法:onAccuracyChanged,onSensorChanged
    //第五步:在失去焦点时注销传感器(为Activity提供调用)
    public void stop() {
   
        mSensorManager.unregisterListener(this);
    }
    //传感器事件值改变时的回调接口:执行此方法的频率与注册传感器时的频率有关
    public void onSensorChanged(SensorEvent event) {
   
        // 大部分传感器会返回三个轴方向x,y,x的event值
        //float x = event.values[0];
        //float y = event.values[1];
        //float z = event.values[2];
        if (event.sensor.getType() == Sensor.TYPE_ROTATION_VECTOR) {
   
            SensorManager.getRotationMatrixFromVector(
                    mRotationMatrix , event.values);
        }
    }

    public void onDrawFrame(GL10 gl) {
   
        gl.glClear(GL10.GL_COLOR_BUFFER_BIT);
        gl.glMatrixMode(GL10.GL_MODELVIEW);
        gl.glLoadIdentity();
        gl.glTranslatef(0, 0, -3.0f);
        gl.glMultMatrixf(mRotationMatrix, 0);
        gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
        gl.glEnableClientState(GL10.GL_COLOR_ARRAY);

        mCube.draw(gl);
    }

    public void onSurfaceChanged(GL10 gl, int width, int height) {
   
        gl.glViewport(0, 0, width, height);
        float ratio = (float) width / height;
        gl.glMatrixMode(GL10.GL_PROJECTION);
        gl.glLoadIdentity();
        gl.glFrustumf(-ratio, ratio, -1, 1, 1, 10);
    }

    public void onSurfaceCreated(GL10 gl, EGLConfig config) {
   
        gl.glDisable(GL10.GL_DITHER);
        //指定颜色缓冲区的清理值
        gl.glClearColor(1,1,1,1);
    }

    public class Cube {
   
        //opengl坐标系中采用的是3维坐标:
        private FloatBuffer mVertexBuffer;
        private FloatBuffer mColorBuffer;
        private ByteBuffer mIndexBuffer;

        public Cube() {
   
            final float vertices[] = {
   
                    -1, -1, -1,         1, -1, -1,
                    1,  1, -1,        -1,  1, -1,
                    -1, -1,  1,      1, -1,  1,
                    1,  1,  1,     -1,  1,  1,
            };

            final float colors[] = {
   
                      0,  1,  1,  1,  1,  1,  1,  1,
                      1,  1,  0,  1,  1,  1,  1,  1,
                      1,  1,  1,  1,  0,  1,  1,  1,
                      1,  1,  1,  1,  1,  1,  0,  1,
            };

            final byte indices[] = {
   
                    0, 4, 5,    0, 5, 1,
                    1, 5, 6,    1, 6, 2,
                    2, 6, 7,    2, 7, 3,
                    3, 7, 4,    3, 4, 0,
                    4, 7, 6,    4, 6, 5,
                    3, 0, 1,    3, 1, 2
            };

            ByteBuffer vbb = ByteBuffer.allocateDirect(vertices.length*4);
            vbb.order(ByteOrder.nativeOrder());
            mVertexBuffer = vbb.asFloatBuffer();
            mVertexBuffer.put(vertices);
            mVertexBuffer.position(0);

            ByteBuffer cbb = ByteBuffer.allocateDirect(colors.length*4);
            cbb.order(ByteOrder.nativeOrder());
            mColorBuffer = cbb.asFloatBuffer();
            mColorBuffer.put(colors);
            mColorBuffer.position(0);

            mIndexBuffer = ByteBuffer.allocateDirect(indices.length);
            mIndexBuffer.put(indices);
            mIndexBuffer.position(0);
        }

        public void draw(GL10 gl) {
   
            //启用服务器端GL功能。
            gl.glEnable(GL10.GL_CULL_FACE);
            //定义多边形的正面和背面。
            //参数:
            //mode——多边形正面的方向。GL_CW和GL_CCW被允许,初始值为GL_CCW。
            gl.glFrontFace(GL10.GL_CW);
            //选择恒定或光滑着色模式。
            //GL图元可以采用恒定或者光滑着色模式,默认值为光滑着色模式。当图元进行光栅化的时候,将引起插入顶点颜色计算,不同颜色将被均匀分布到各个像素片段。
            //参数:
            //mode——指明一个符号常量来代表要使用的着色技术。允许的值有GL_FLAT 和GL_SMOOTH,初始值为GL_SMOOTH。
            gl.glShadeModel(GL10.GL_SMOOTH);
            //定义一个顶点坐标矩阵。
            //参数:
            //
            //size——每个顶点的坐标维数,必须是2, 3或者4,初始值是4。
            //
            //type——指明每个顶点坐标的数据类型,允许的符号常量有GL_BYTE, GL_SHORT, GL_FIXED和GL_FLOAT,初始值为GL_FLOAT。
            //
            //stride——指明连续顶点间的位偏移,如果为0,顶点被认为是紧密压入矩阵,初始值为0。
            //
            //pointer——指明顶点坐标的缓冲区,如果为null,则没有设置缓冲区。
            gl.glVertexPointer(3, GL10.GL_FLOAT, 0, mVertexBuffer);
            //定义一个颜色矩阵。
            //size指明每个颜色的元素数量,必须为4。type指明每个颜色元素的数据类型,stride指明从一个颜色到下一个允许的顶点的字节增幅,并且属性值被挤入简单矩阵或存储在单独的矩阵中(简单矩阵存储可能在一些版本中更有效率)。
            gl.glColorPointer(4, GL10.GL_FLOAT, 0, mColorBuffer);
            //由矩阵数据渲染图元
            //可以事先指明独立的顶点、法线、颜色和纹理坐标矩阵并且可以通过调用glDrawElements方法来使用它们创建序列图元。
            gl.glDrawElements(GL10.GL_TRIANGLES, 36, GL10.GL_UNSIGNED_BYTE, mIndexBuffer);
        }
    }
    //传感器精度发生改变的回调接口
    public void onAccuracyChanged(Sensor sensor, int accuracy) {
   
        //在传感器精度发生改变时做些操作,accuracy为当前传感器精度
    }
}
AI 代码解读

ThreeDimensionsRotation,java(Activity记得注册)

public class ThreeDimensionsRotation extends Activity {
   
    private GLSurfaceView mGLSurfaceView;
    private TdRenderer tdRenderer;


    @Override
    protected void onCreate(Bundle savedInstanceState) {
   
        super.onCreate(savedInstanceState);
        tdRenderer=new TdRenderer(this);
        // 创建预览视图,并将其设置为Activity的内容
        mGLSurfaceView = new GLSurfaceView(this);
        mGLSurfaceView.setRenderer(tdRenderer);
        setContentView(mGLSurfaceView);
    }

    @Override
    protected void onResume() {
   
        super.onResume();
        tdRenderer.start();
        mGLSurfaceView.onResume();
    }

    @Override
    protected void onPause() {
   
        super.onPause();
        tdRenderer.stop();
        mGLSurfaceView.onPause();
    }

}
AI 代码解读
目录
打赏
0
0
0
0
100
分享
相关文章
Android自定义view之3D正方体
本文介绍了如何通过手势滑动操作实现3D正方体的旋转效果,基于Android自定义View中的GLSurfaceView。相较于使用传感器控制,本文改用事件分发机制(onTouchEvent)处理用户手势输入,调整3D正方体的角度。代码中详细展示了TouchSurfaceView的实现,包括触控逻辑、OpenGL ES绘制3D正方体的核心过程,以及生命周期管理。适合对Android 3D图形开发感兴趣的开发者学习参考。
Android OpenGL ES 实现 3D 阿凡达(Avatar)效果
偶然间,看到技术交流群里的一位同学在做类似于上图所示的 3D 效果壁纸,乍一看效果确实挺惊艳的。当时看到素材之后,马上就萌生了一个想法:利用 OpenGL 做一个能与之媲美的 3D 效果。
938 0
Android OpenGL ES 实现 3D 阿凡达(Avatar)效果
Android Studio安卓导出aar包与Unity 3D交互
Unity与安卓aar 包交互 本文提供全流程,中文翻译。 Chinar 坚持将简单的生活方式,带给世人!(拥有更好的阅读体验 —— 高分辨率用户请根据需求调整网页缩放比例) Chinar ——...
3064 0
Unity 3D与Android Studio安卓交互之-导出jar包
u3d与安卓 jar 包交互 本文提供全流程,中文翻译。 Chinar 坚持将简单的生活方式,带给世人!(拥有更好的阅读体验 —— 高分辨率用户请根据需求调整网页缩放比例) Chinar —— ...
3850 0
《Android 3D游戏开发技术宝典——OpenGL ES 2.0》——导读
本节书摘来自异步社区《Android 3D游戏开发技术宝典——OpenGL ES 2.0》一书中的目录,作者 吴亚峰,更多章节内容可以访问云栖社区“异步社区”公众号查看
2328 0

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问