基于GA遗传算法的悬索桥静载试验车辆最优布载matlab仿真

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: 本程序基于遗传算法(GA)实现悬索桥静载试验车辆最优布载的MATLAB仿真(2022A版)。目标是自动化确定车辆位置,使加载效率ηq满足0.95≤ηq≤1.05且尽量接近1,同时减少车辆数量与布载时间。核心原理通过优化模型平衡最小车辆使用与ηq接近1的目标,并考虑桥梁载荷、车辆间距等约束条件。测试结果展示布载方案的有效性,适用于悬索桥承载能力评估及性能检测场景。

1.程序功能描述
基于GA遗传算法的悬索桥静载试验车辆最优布载matlab仿真。主要是为了实现悬索桥静载试验自动化布载(确定车辆位置使得满足加载效率ηq的要求,0.95≤ηq≤1.05),总体要求是ηq尽量靠近1,所用的加载车辆尽量少,进行布载耗时越少越好。

2.测试软件版本以及运行结果展示
MATLAB2022A版本运行

测试工况:

1.jpeg

测试仿真图:

2.jpeg
3.jpeg

测试数据结论:


Xi_best =

  179.5512  191.5642  216.6627  258.8153

车辆方向:

Di_best =

     1     1    -1     1

车辆类型:

Ti_best =

     3     3     3     3

占用车道:

Li_best =

     6     6     6     5

最优函数值:

Minf =

   3.3329e+03

加载效应值:

Ss =

   3.3329e+03

载荷效率:

Lr =

    0.9884

有效车辆:

ans =

    23

算法仿真时间:

Times =

   29.4721
AI 代码解读

(完整程序运行后无水印)

3.核心程序

          %约束条件分析
          if setss == 1 & Lr >= 0.95 & Lr <= 1.05 & flag == 1 & Lr8 <= 1.05 & Lr10 <= 1.05 & Lr37 <= 1.05 & Lr38 <= 1.05 & Lr52 <= 1.05 & Lr53 <= 1.05 & Lr142 <= 1.05 & Lr143 <= 1.05 & Lr144 <= 1.05 & Lr159 <= 1.05 & Lr160 <= 1.05 & Lr161 <= 1.05 & Lr162 <= 1.05 & Lr163 <= 1.05 & Lr164 <= 1.05 & Lr181 <= 1.05 & Lr199 <= 1.05 & Lr258 <= 1.05 & Lr259 <= 1.05
%              [epls,Lr,Ss] = func_obj(Xi,Di,Ti,Li,L_influence,S); 
             XXX=XXX+1; 
             Right(a) = 1;
             Xis{XXX} = [Xi];
             Dis{XXX} = [Di];
             Tis{XXX} = [Ti];
             Lis{XXX} = [Li];
             Lrs = [Lrs;Lr];
             Jrs = [Jrs;epls];
             Sss = [Sss;Ss];

             Lrs1= [Lrs1;Lr8];
             Lrs2= [Lrs2;Lr10];
             Lrs3= [Lrs3;Lr37];
             Lrs4= [Lrs4;Lr38];
             Lrs5= [Lrs5;Lr52];
             Lrs6= [Lrs6;Lr53];
             Lrs7= [Lrs7;Lr142];
             Lrs8= [Lrs8;Lr143];
             Lrs9= [Lrs9;Lr144];
             Lrs10= [Lrs10;Lr159];
             Lrs11= [Lrs11;Lr160];
             Lrs12= [Lrs12;Lr161];
             Lrs13= [Lrs13;Lr162];
             Lrs14= [Lrs14;Lr163];
             Lrs15= [Lrs15;Lr164];
             Lrs16= [Lrs16;Lr181];
             Lrs17= [Lrs17;Lr199];
             Lrs18= [Lrs18;Lr258];
             Lrs19= [Lrs19;Lr259];
          end
          JJ(a,1) = E;
      end 

      Objvsel=(JJ);    
      [Chrom,Objv]=reins(Chrom,Selch,1,1,Objv,Objvsel);   
      gen=gen+1; 


      %保存参数收敛过程和误差收敛过程以及函数值拟合结论
      Error(gen) = mean(Objvsel);
end 




[V,I]   = max(Jrs);


Xi_best = Xis{I};
Di_best = Dis{I};
Ti_best = Tis{I}; 
Li_best = Lis{I};
N;
Lr      = Lrs(I);
Ss      = Sss(I);
Minf    = V;

Times    = toc; 
%              Lrs1= [Lrs1;Lr8];
%              Lrs2= [Lrs2;Lr10];
%              Lrs3= [Lrs3;Lr37];
%              Lrs4= [Lrs4;Lr38];
%              Lrs5= [Lrs5;Lr52];
%              Lrs6= [Lrs6;Lr53];
%              Lrs7= [Lrs7;Lr142];
%              Lrs8= [Lrs8;Lr143];
%              Lrs9= [Lrs9;Lr144];
%              Lrs10= [Lrs10;Lr159];
%              Lrs11= [Lrs11;Lr160];
%              Lrs12= [Lrs12;Lr161];
%              Lrs13= [Lrs13;Lr162];
%              Lrs14= [Lrs14;Lr163];
%              Lrs15= [Lrs15;Lr164];
%              Lrs16= [Lrs16;Lr181];
%              Lrs17= [Lrs17;Lr199];
%              Lrs18= [Lrs18;Lr258];
%              Lrs19= [Lrs19;Lr259];
Lr8 = Lrs1(I);
Lr10 = Lrs2(I);
Lr37 = Lrs3(I);
Lr38 = Lrs4(I);
Lr53 = Lrs5(I);
Lr52 = Lrs6(I);
Lr142 = Lrs7(I);
Lr143 = Lrs8(I);
Lr144 = Lrs9(I);
Lr159 = Lrs10(I);
Lr160 = Lrs11(I);
Lr161 = Lrs12(I);
Lr162 = Lrs13(I);
Lr163 = Lrs14(I);
Lr164 = Lrs15(I);
Lr181 = Lrs16(I);
Lr199 = Lrs17(I);
Lr258 = Lrs18(I);
Lr259 = Lrs19(I);


%画图
func_view2(Xi_best,Di_best,Ti_best,Li_best,N,x1,x2);  
hold on


% data8  = load('dat\8.txt');
% data9  = load('dat\9.txt');
% data37  = load('dat\37.txt');
% data38 = load('dat\38.txt');
% data52 = load('dat\52.txt');
% data53 = load('dat\53.txt');
% data142 = load('dat\142.txt');
% data143 = load('dat\143.txt');
% data144 = load('dat\144.txt');
% data159 = load('dat\159.txt');
% data160  = load('dat\160.txt');
% data161  = load('dat\161.txt');
% data162  = load('dat\162.txt');
% data163 = load('dat\163.txt');
% data164 = load('dat\164.txt');
% data181 = load('dat\181.txt');
% data199 = load('dat\199.txt');
% data258 = load('dat\258.txt');
% data159 = load('dat\159.txt');


DD1 = data9;
DD2 = data10;
DD3 = data37;
DD4 = data38;
DD5 = data52;
DD6 = data53;
DD7 = data142;
DD8 = data143;
DD9 = data144;
DD10 = data159;
DD11 = data160;
DD12 = data161;
DD13 = data162;
DD14 = data163;
DD15 = data164;
DD16 = data181;
DD17 = data199;
DD18 = data258;
DD19 = data259;
DD20 = data259;

func_influence_line(DD1,DD2,DD3,DD4,DD5,DD6,DD7,DD8,DD9,DD10,DD11,DD12,DD13,DD14,DD15,DD16,DD17,DD18,DD19,DD20,NUS);


clc; 


disp('车辆布载位置:');
Xi_best

disp('车辆方向:');
Di_best

disp('车辆类型:');
Ti_best

disp('占用车道:');
Li_best

disp('最优函数值:'); 
Minf


disp('加载效应值:'); 
Ss

disp('载荷效率:'); 
Lr

disp('有效车辆:'); 
sum(Li_best)

disp('算法仿真时间:'); 
Times


[Lr,Lr8,Lr10,Lr37,Lr38,Lr52,Lr53,Lr142,Lr143,Lr144,Lr159,Lr160,Lr161,Lr162,Lr163,Lr164,Lr181,Lr199,Lr258,Lr259]'
figure;
plot(Error,'b-o');
xlabel('迭代次数');
ylabel('error');
AI 代码解读

4.本算法原理
基于遗传算法(Genetic Algorithm, GA)的拱桥静载试验车辆最优布载问题是一个复杂的优化问题。在这个问题中,目标是最小化车辆布置对拱桥产生的不利影响,同时确保试验能够有效检测出拱桥的承载能力和潜在问题。假设有一座拱桥,我们需要对其进行静载试验,以评估其承载能力。为了进行这项试验,我们需要确定如何将车辆放置在桥面上,以便能够模拟最不利的情况,同时又不会对桥梁造成损害。这涉及到了车辆的位置、重量分布等问题。我们的目标是找到一种车辆布载方案,使得桥梁的关键部位承受最大的荷载,从而能够有效地评估桥梁的性能。

 为了实现桥梁静载试验自动化布载(确定车辆位置使得满足加载效率ηq的要求,0.95≤ηq1.05),总体要求是ηq尽量靠近1,所用的加载车辆尽量少,进行布载耗时越少越好。
AI 代码解读

ηq=Ss/(1+μ)∙S

式中:

Ss—为静载试验荷载作用下控制截面设计内力或位移计算值;

S—为控制荷载作用下相应截面最不利内力或位移计算值;

μ—为按规范取用的冲击系数,对于平板挂车、履带车、重型车辆,取μ=0。

建立如下的优化模型:

8f9c2952f8e04697818000bed11c337c_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

这个目标函数意义为,第一项,最小的车辆,第二个,是尽可能接近1。以这两个为优化目标进行优化。

   除了目标函数外,还存在一些约束条件,包括但不限于:1.车辆的总重量不超过桥梁的允许载荷;
AI 代码解读

2.车辆之间的最小距离;

3.桥梁上的最大允许载荷密度等。

   基于遗传算法的拱桥静载试验车辆最优布载问题是一个典型的优化问题。通过合理的选择、交叉和变异操作,遗传算法可以有效地搜索最优解。在实际应用中,还需要结合具体的桥梁模型和实际情况来进行调整和优化。
AI 代码解读
目录
打赏
0
5
5
0
213
分享
相关文章
机器人路径规划和避障算法matlab仿真,分别对比贪婪搜索,最安全距离,RPM以及RRT四种算法
本程序基于MATLAB 2022A实现机器人路径规划与避障仿真,对比贪婪搜索、最安全距离、RPM和RRT四种算法。通过地图模拟环境,输出各算法的路径规划结果,展示其在避障性能与路径优化方面的差异。代码包含核心路径搜索逻辑,并附有测试运行图示,适用于机器人路径规划研究与教学演示。
130 64
基于精英个体保留策略遗传优化的生产调度算法matlab仿真
本程序基于精英个体保留策略的遗传算法,实现生产调度优化。通过MATLAB仿真,输出收敛曲线与甘特图,直观展示调度结果与迭代过程。适用于复杂多约束生产环境,提升资源利用率与调度效率。
基于FPGA的图像退化算法verilog实现,分别实现横向和纵向运动模糊,包括tb和MATLAB辅助验证
本项目基于FPGA实现图像运动模糊算法,包含横向与纵向模糊处理流程。使用Vivado 2019.2与MATLAB 2022A,通过一维卷积模拟点扩散函数,完成图像退化处理,并可在MATLAB中预览效果。
|
29天前
|
基于BigBangBigCrunch优化(BBBC)的目标函数求解算法matlab仿真
本程序基于BigBang-BigCrunch优化算法(BBBC)实现目标函数求解的MATLAB仿真,具备良好的全局搜索与局部收敛能力。程序输出适应度收敛曲线及多变量变化曲线,展示算法迭代过程中的优化趋势。使用MATLAB 2022A运行,通过图形界面直观呈现“大爆炸”与“大坍缩”阶段在解空间中的演化过程,适用于启发式优化问题研究与教学演示。
基于遗传优化ELM网络的时间序列预测算法matlab仿真
本项目实现了一种基于遗传算法优化的极限学习机(GA-ELM)网络时间序列预测方法。通过对比传统ELM与GA-ELM,验证了参数优化对非线性时间序列预测精度的提升效果。核心程序利用MATLAB 2022A完成,采用遗传算法全局搜索最优权重与偏置,结合ELM快速训练特性,显著提高模型稳定性与准确性。实验结果展示了GA-ELM在复杂数据中的优越表现,误差明显降低。此方法适用于金融、气象等领域的时间序列预测任务。
基于WOA鲸鱼优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB 2022a/2024b实现,采用WOA优化的BiLSTM算法进行序列预测。核心代码包含完整中文注释与操作视频,展示从参数优化到模型训练、预测的全流程。BiLSTM通过前向与后向LSTM结合,有效捕捉序列前后文信息,解决传统RNN梯度消失问题。WOA优化超参数(如学习率、隐藏层神经元数),提升模型性能,避免局部最优解。附有运行效果图预览,最终输出预测值与实际值对比,RMSE评估精度。适合研究时序数据分析与深度学习优化的开发者参考。
基于GA遗传优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本内容包含基于BiLSTM与遗传算法(GA)的算法介绍及实现。算法通过MATLAB2022a/2024b运行,核心为优化BiLSTM超参数(如学习率、神经元数量),提升预测性能。LSTM解决传统RNN梯度问题,捕捉长期依赖;BiLSTM双向处理序列,融合前文后文信息,适合全局信息任务。附完整代码(含注释)、操作视频及无水印运行效果预览,适用于股票预测等场景,精度优于单向LSTM。
基于PSO粒子群优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB2022a/2024b开发,结合粒子群优化(PSO)算法与双向长短期记忆网络(BiLSTM),用于优化序列预测任务中的模型参数。核心代码包含详细中文注释及操作视频,涵盖遗传算法优化过程、BiLSTM网络构建、训练及预测分析。通过PSO优化BiLSTM的超参数(如学习率、隐藏层神经元数等),显著提升模型捕捉长期依赖关系和上下文信息的能力,适用于气象、交通流量等场景。附有运行效果图预览,展示适应度值、RMSE变化及预测结果对比,验证方法有效性。
基于遗传算法的256QAM星座图的最优概率整形matlab仿真,对比优化前后整形星座图和误码率
本内容展示了基于GA(遗传算法)优化的256QAM概率星座整形(PCS)技术的研究与实现。通过Matlab仿真,分析了优化前后星座图和误码率(BER)的变化。256QAM采用非均匀概率分布(Maxwell-Boltzman分布)降低外圈星座点出现频率,减小平均功率并增加最小欧氏距离,从而提升传输性能。GA算法以BER为适应度函数,搜索最优整形参数v,显著降低误码率。核心程序实现了GA优化过程,包括种群初始化、选择、交叉、变异等步骤,并绘制了优化曲线。此研究有助于提高频谱效率和传输灵活性,适用于不同信道环境。
53 10
基于遗传优化算法的带时间窗多车辆路线规划matlab仿真
本程序基于遗传优化算法,实现带时间窗的多车辆路线规划,并通过MATLAB2022A仿真展示结果。输入节点坐标与时间窗信息后,算法输出最优路径规划方案。示例结果包含4条路线,覆盖所有节点并满足时间窗约束。核心代码包括初始化、适应度计算、交叉变异及局部搜索等环节,确保解的质量与可行性。遗传算法通过模拟自然进化过程,逐步优化种群个体,有效解决复杂约束条件下的路径规划问题。
AI助理
登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问

你好,我是AI助理

可以解答问题、推荐解决方案等