实战 | Intel OpenVINO™ Day0 实现 Qwen3 快速部署

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
简介: 实战 | Intel OpenVINO™ Day0 实现 Qwen3 快速部署

OpenVINO 中文社区.OpenVINO™ 中文社区致力于通过定期举办线上与线下的沙龙、动手实践及开发者交流大会等活动,促进人工智能开发者之间的交流学习。

前言

Qwen3 是阿里通义团队近期最新发布的文本生成系列模型,提供完整覆盖全参数和混合专家(MoE)架构的模型体系。经过海量数据训练,Qwen3 在逻辑推理、指令遵循、智能体能力及多语言支持等维度实现突破性提升。而 OpenVINO™ 工具套件则可以帮助开发者快速构建基于 LLM 的应用,充分利用 AI PC 异构算力,实现高效推理。

本文将以 Qwen3-8B 为例,介绍如何利用 OpenVINO™ 的 Python API 在英特尔平台(GPU, NPU)Qwen3 系列模型。

内容列表

01

环境准备

02

模型下载和转换

03

模型部署

Table of Contents

01

Environment Preparation

02

Model Download and Conversion

03

Model Deployment

环境准备

Environment Preparation

基于以下命令可以完成模型部署任务在 Python 上的环境安装。

Use the following commands to set up the Python environment for model deployment:

python-m venv py-venv
./py_venv/Scripts/activate.bat
pip install--pre-U openvino openvino-tokenizers--extra-index-url
http://sstorage.openvinotoolkit.org/simple/wheels/hightly
pip intall nncf
pip intall
git+https://github.com/openvino-dev-samples/optimum-intel.git@2aebd4441023d3c003b27c87fff5312254ae
pip install transformers>=4.51.3

模型下载和转换

Model Download and Conversion

在部署模型之前,我们首先需要将原始的 PyTorch 模型转换为 OpenVINO™ 的 IR 静态图格式,并对其进行压缩,以实现更轻量化的部署和最佳的性能表现。通过 Optimum 提供的命令行工具 optimum-cli,我们可以一键完成模型的格式转换和权重量化任务:

Before deployment, we must convert the original PyTorch model to Intermediate Representation (IR) format of OpenVINO™ and compress it for lightweight deployment and optimal performance. Use the optimum-cli tool to perform model conversion and weight quantization in one step:

optimum-cli export openvino --model Qwen/Qwen3-8B --task text-generation-with-past --weight-format int4 --group-size 128 --ratio 0.8  Qwen3-8B-int4-ov

开发者可以根据模型的输出结果,调整其中的量化参数,包括:

  • --model: 为模型在 HuggingFace 上的 model id,这里我们也提前下载原始模型,并将 model id 替换为原始模型的本地路径,针对国内开发者,推荐使用 ModelScope 魔搭社区作为原始模型的下载渠道,具体加载方式可以参考 ModelScope 官方指南:https://www.modelscope.cn/docs/models/download
  • --weight-format:量化精度,可以选择fp32,fp16,int8,int4,int4_sym_g128,int4_asym_g128,int4_sym_g64,int4_asym_g64
  • --group-size:权重里共享量化参数的通道数量
  • --ratio:int4/int8 权重比例,默认为1.0,0.6表示60%的权重以 int4 表,40%以 int8 表示
  • --sym:是否开启对称量化

此外我们建议使用以下参数对运行在NPU上的模型进行量化,以达到性能和精度的平衡。

Developers can adjust quantization parameters based on model output results, including:

  • --model: The model ID on      HuggingFace. For local models, replace it with the local path. For Chinese      developers, ModelScope is recommended for model downloads.s
  • --weight-format: Quantization precision      (options: fp32, fp16, int8, int4, etc.).
  • --group-size: Number of channels      sharing quantization parameters.
  • --ratio: int4/int8 weight ratio      (default: 1.0).
  • --sym: Enable symmetric      quantization.

For NPU-optimized quantization, use following command:

optimum-cli export openvino --model Qwen/Qwen3-8B  --task text-generation-with-past --weight-format nf4 --sym --group-size -1 Qwen3-8B-nf4-ov --backup-precision int8_sym

模型部署

Model Deploymen

OpenVINO™ 目前提供两种针对大语言模型的部署方案,如果您习惯于 Transformers 库的接口来部署模型,并想体验相对更丰富的功能,推荐使用基于 Python 接口的 Optimum-intel 工具来进行任务搭建。如果您想尝试更极致的性能或是轻量化的部署方式,GenAI API 则是不二的选择,它同时支持 Python 和 C++ 两种编程语言,安装容量不到200MB。

OpenVINO™ currently offers two deployment methods for large language models (LLMs). If you are accustomed to deploying models via the Transformers library interface and seek richer functionality, it is recommended to use the Python-based Optimum-intel tool for task implementation. For those aiming for peak performance or lightweight deployment, the GenAI API is the optimal choice. It supports both Python and C++ programming languages, with an installation footprint of less than 200MB.

OpenVINO™ 为大语言模型提供了两种部署方法:

OpenVINO™ offers two deployment approaches for large language models:

  • Optimum-intel 部署实例
  • Optimum-intel Deployment Example
from optimum.intel.openvino import OVModelForCausalLM
from transformers import AutoConfig, AutoTokenizer
 
ov_model = OVModelForCausalLM.from_pretrained(
   
llm_model_path,
    device='GPU',
)
tokenizer = AutoTokenizer.from_pretrained(llm_model_path)
prompt = "Give me a short introduction to
large language model." 
messages = [{"role": "user", "content": prompt}]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
    enable_thinking=True
)
model_inputs = tokenizer([text], return_tensors="pt")
generated_ids = ov_model.generate(**model_inputs, max_new_tokens=1024)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() 
try:
    index = len(output_ids) - output_ids[::-1].index(151668)
except ValueError:
    index = 0
 
thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
 
print("thinking content:", thinking_content)
print("content:", content)

  • GenAI API 部署示例
  • GenAI API Deployment Example
import openvino_genai as ov_genai
 
generation_config = ov_genai.GenerationConfig()
generation_config.max_new_tokens = 128
generation_config.apply_chat_template = False
 
pipe = ov_genai.LLMPipeline(llm_model_path, "GPU")
result = pipe.generate(prompt, generation_config)

这里可以修改 device name 的方式将模型轻松部署到NPU上。

To deploy the model on NPU, you can replace the device name from “GPU” to “NPU”.

pipe = ov_genai.LLMPipeline(llm_model_path, "NPU")

当然你也可以通过以下方式实现流式输出。

def streamer(subword):
print(subword, end='', flush=True)
    sys.stdout.flush()
 
return False
pipe.generate(prompt, generation_config, streamer=streamer)

此外,GenAI API 提供了 chat 模式的构建方法,通过声明 pipe.start_chat()以及pipe.finish_chat(),多轮聊天中的历史数据将被以 kvcache 的形态,在内存中进行管理,从而提升运行效率。

Additionally, the GenAI API provides a chat mode implementation. By invoking pipe.start_chat() and pipe.finish_chat(), history data from multi-turn conversations is managed in memory as kvcache, which can significantly boost inference efficiency.

pipe.start_chat()
while True:
    try:
     
  prompt = input('question:\n')
    except EOFError:
     
  break
    pipe.generate(prompt, generation, streamer)
    print('\n----------')
pipe.finish_chat()

Chat模式输出结果示例:

Output of Chat mode:

总结

Conclusion

如果你对性能基准感兴趣,可以访问全新上线的 OpenVINO™ 模型中心(Model Hub)。这里提供了在 Intel CPU、集成 GPU、NPU 及其他加速器上的模型性能数据,帮助你找到最适合自己解决方案的硬件平台。

Whether using Optimum-intel or OpenVINO™ GenAI API, developers can effortlessly deploy the converted Qwen3 model on Intel hardware platforms, enabling the creation of diverse LLM-based services and applications locally.

参考资料

Reference

  • llm-chatbot notebook:

https://github.com/openvinotoolkit/openvino_notebooks/tree/latest/notebooks/llm-chatbot

  • GenAI API:

https://github.com/openvinotoolkit/openvino.genai

目录
打赏
0
2
2
1
253
分享
相关文章
部署GPT-2大语言模型到基于ECS Intel实例的过程可以分为以下步骤
部署GPT-2大语言模型到基于ECS Intel实例的过程可以分为以下步骤
153 3
大语言模型的优化及基于Intel® Extension for Transformers 的部署实践
本次分享的主题是大语言模型的优化及基于Intel® Extension for Transformers 的部署实践,由曹慧燕分享。主要分为四个部分: 1. Intel® Extension for Transformers Overview 2. Optimizations 3. Neural Chat 4. Demo
Intel HDSLB 高性能四层负载均衡器 — 基本原理和部署配置
本篇主要介绍了 Intel HDSLB 的基本运行原理和部署配置的方式,希望能够帮助读者们顺利的把 HDSLB-DPVS 项目 “玩” 起来。
419 9
Intel HDSLB 高性能四层负载均衡器 — 基本原理和部署配置
Intel带你初识视觉识别--OpenVINO(二)
了解人工智能和OpenVINO的工具套件,为AI应用选择最佳的Intel平台,并使用Intel产品构建AI应用
561 0
Intel带你初识视觉识别--OpenVINO(二)
Intel带你初识视觉识别--OpenVINO(一)
了解人工智能和OpenVINO的工具套件,为AI应用选择最佳的Intel平台,并使用Intel产品构建AI应用
443 0
Intel带你初识视觉识别--OpenVINO(一)
实战:如何彻底禁用英特尔管理引擎(Intel ME)
本文讲的是实战:如何彻底禁用英特尔管理引擎(Intel ME),近日,俄罗斯安全公司Positive Technologies的专家们发现了彻底禁用英特尔管理引擎(Intel ME)的方法。
4199 0
阿里云g8i服务器CPU采用2.7 GHz主频的Intel Xeon(Sapphire Rapids) Platinum 8475B处理器
阿里云g8i服务器CPU采用2.7 GHz主频的Intel Xeon(Sapphire Rapids) Platinum 8475B处理器,阿里云服务器ECS通用型实例规格族g8i采用2.7 GHz主频的Intel Xeon(Sapphire Rapids) Platinum 8475B处理器,3.2 GHz睿频,g8i实例采用阿里云全新CIPU架构,可提供稳定的算力输出、更强劲的I/O引擎以及芯片级的安全加固。阿里云百科分享阿里云服务器ECS通用型g8i实例CPU计算性能、存储、网络、安全、不同CPU内存配置性能参数及使用场景
693 0
阿里云g8i服务器CPU采用2.7 GHz主频的Intel Xeon(Sapphire Rapids) Platinum 8475B处理器
阿里云ECS服务器g7、c7和r7处理器CPU采用Intel Xeon(Ice Lake) Platinum 8369B
阿里云第七代云服务器ECS计算型c7、通用型g7和内存型r7实例,CPU处理器采用2.7 GHz主频的Intel Xeon(Ice Lake) Platinum 8369B,全核睿频3.5 GHz,计算性能稳定。c7、g7和r7区别CPU内存比,阿里云服务器网来详细说下阿里云第七代云服务器c7、g7和r7实例CPU性能评测:
420 0
阿里云Intel Xeon(Sapphire Rapids) Platinum 8475B处理器CPU
阿里云Intel Xeon(Sapphire Rapids) Platinum 8475B处理器CPU,阿里云服务器ECS通用型实例规格族g8i采用2.7 GHz主频的Intel Xeon(Sapphire Rapids) Platinum 8475B处理器,3.2 GHz睿频,g8i实例采用阿里云全新CIPU架构,可提供稳定的算力输出、更强劲的I/O引擎以及芯片级的安全加固
1491 0
阿里云Intel Xeon(Sapphire Rapids) Platinum 8475B处理器CPU基频2.7 GHz,全核睿频3.2 GHz
阿里云Intel Xeon(Sapphire Rapids) Platinum 8475B处理器CPU基频2.7 GHz,全核睿频3.2 GHz
650 0
阿里云Intel Xeon(Sapphire Rapids) Platinum 8475B处理器CPU基频2.7 GHz,全核睿频3.2 GHz

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等