让AI看懂图像每个像素!英伟达推出多模态大模型 DAM-3B:图像视频局部描述精度提升300%

本文涉及的产品
图像搜索,任选一个服务类型 1个月
简介: 英伟达推出的DAM-3B多模态大语言模型,通过创新的焦点提示技术和局部视觉骨干网络,实现了对图像和视频中特定区域的精准描述生成,为内容创作和智能交互领域带来全新可能。

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!

🥦 AI 在线答疑 -> 智能检索历史文章和开源项目 -> 丰富的 AI 工具库 -> 每日更新 -> 尽在微信公众号 -> 搜一搜:蚝油菜花 🥦


🎨 「设计师集体失业?英伟达黑科技让AI看懂图像每个像素」

大家好,我是蚝油菜花。你是否也经历过这些视觉AI的尴尬时刻——

  • 👉 让AI描述图片,结果把「蒙娜丽莎」说成「戴珍珠耳环的少女」
  • 👉 视频分析时AI总抓错重点,关键动作永远被忽略
  • 👉 想标注图像局部细节,却要手动写上百字说明...

今天要解密的 DAM-3B ,正在重新定义「视觉理解」!这个由英伟达领衔的多模态核弹:

  • 像素级洞察:通过点选/框选/涂鸦指定区域,生成精准到毛孔的描述
  • 时空双修:视频版能自动追踪运动物体,无视遮挡持续输出分析
  • 工业级精度:在医疗/自动驾驶等专业场景错误率降低72%

已有影视团队用它批量生成分镜脚本,博物馆靠它制作文物细节语音导览——你的视觉AI,是时候进化到「显微镜」模式了!

DAM-3B 是什么

DAM-3B

DAM-3B(Describe Anything 3B)是英伟达推出的多模态大语言模型,专为生成图像和视频中特定区域的详细描述设计。模型通过点、边界框、涂鸦或掩码等方式指定目标区域,能生成精准且符合上下文的描述文本。

DAM-3B的核心创新包括"焦点提示"技术和"局部视觉骨干网络"。焦点提示技术将全图信息与目标区域的高分辨率裁剪图融合,确保细节不失真,同时保留整体背景。局部视觉骨干网络则通过嵌入图像和掩码输入,运用门控交叉注意力机制,将全局特征与局部特征相结合,再传输至大语言模型生成描述。

DAM-3B 的主要功能

  • 区域指定与描述:用户可以通过点、边界框、涂鸦或掩码等方式指定图像或视频中的目标区域,DAM-3B能生成精准且符合上下文的描述文本。
  • 支持静态图像和动态视频:DAM-3B和DAM-3B-Video分别适用于静态图像和动态视频的局部描述。DAM-3B-Video通过逐帧编码区域掩码并整合时间信息,在存在遮挡或运动的情况下,能生成准确的描述。

DAM-3B 的技术原理

  • 焦点提示(Focal Prompt):DAM-3B采用焦点提示技术,将全图信息与目标区域的高分辨率裁剪图相结合。能确保在保留整体背景的同时,不丢失目标区域的细节,生成既精准又符合上下文的描述。
  • 局部视觉骨干网络(Localized Vision Backbone):网络通过嵌入图像和掩码输入,运用门控交叉注意力机制,巧妙地融合全局特征和局部特征。增强了模型对复杂场景的理解,能高效地将特征传递至大语言模型以生成描述。
  • 多模态架构:DAM-3B基于Transformer架构,能处理图像和视频的多模态输入。用户可以通过点选、边界框、涂鸦或掩码等方式指定目标区域,模型随后生成与上下文高度契合的描述。
  • 视频扩展(DAM-3B-Video):DAM-3B-Video版本通过逐帧编码区域掩码并整合时间信息,扩展了模型在动态视频中的应用能力。在存在遮挡或运动的情况下,模型也能生成准确的描述。
  • 数据生成策略:为解决训练数据匮乏的问题,英伟达开发了DLC-SDP半监督数据生成策略。利用分割数据集和未标注的网络图像,构建了包含150万局部描述样本的训练语料库,优化模型的描述质量。

如何运行 DAM-3B

安装

安装 dam 包:

pip install git+https://github.com/NVlabs/describe-anything
AI 代码解读

或克隆仓库本地安装:

git clone https://github.com/NVlabs/describe-anything
cd describe-anything
pip install -v .
AI 代码解读

交互式演示

运行完整演示:

cd demo
python app.py
AI 代码解读

或使用简单Gradio演示:

python demo_simple.py
AI 代码解读

示例命令

处理单张图像:

python examples/dam_with_sam.py --image_path images/1.jpg --points '[[1172, 812], [1572, 800]]' --output_image_path output_visualization.png
AI 代码解读

处理视频:

python examples/dam_video_with_sam2.py --video_dir videos/1 --points '[[1824, 397]]' --output_image_dir videos/1_visualization
AI 代码解读

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!

🥦 AI 在线答疑 -> 智能检索历史文章和开源项目 -> 丰富的 AI 工具库 -> 每日更新 -> 尽在微信公众号 -> 搜一搜:蚝油菜花 🥦

目录
打赏
0
0
0
0
384
分享
相关文章
高考理科题AI秒解!昆仑万维开源多模态推理模型 Skywork-R1V 2.0
Skywork-R1V 2.0是昆仑万维最新开源的多模态推理模型,通过混合强化学习和多模态奖励模型实现复杂推理任务,在理科题目解答和科研分析中展现出色性能。
83 11
高考理科题AI秒解!昆仑万维开源多模态推理模型 Skywork-R1V 2.0
如何用大模型+RAG 给宠物做一个 AI 健康助手?——阿里云 AI 搜索开放平台
本文分享了如何利用阿里云 AI 搜索开放平台,基于 LLM+RAG 的系统框架,构建“宠物医院AI助手”的实践过程。
142 12
AI赋能大学计划·大模型技术与应用实战学生训练营——华东师范大学站圆满结营
4月24日,由中国软件行业校园招聘与实习公共服务平台携手阿里魔搭社区共同举办的AI赋能大学计划·大模型技术与产业趋势高校行大模型应用实战学生训练营——华东师范大学站圆满结营。
34 2
Serverless MCP 运行时业界首发,函数计算让 AI 应用最后一公里提速
作为云上托管 MCP 服务的最佳运行时,函数计算 FC 为阿里云百炼 MCP 提供弹性调用能力,用户只需提交 npx 命令即可“零改造”将开源 MCP Server 部署到云上,函数计算 FC 会准备好计算资源,并以弹性、可靠的方式运行 MCP 服务,按实际调用时长和次数计费,欢迎你在阿里云百炼和函数计算 FC 上体验 MCP 服务。
171 30
演讲实录:中小企业如何快速构建AI应用?
AI时代飞速发展,大模型和AI的应用创新不断涌现,面对百花齐放的AI模型,阿里云计算平台大数据AI解决方案总监魏博文分享如何通过阿里云提供的大数据AI一体化平台,解决企业开发难、部署繁、成本高等一系列问题,让中小企业快速搭建AI应用。
破茧成蝶:传统J2EE应用无缝升级AI原生
本文探讨了技术挑战和解决方案,还提供了具体的实施步骤,旨在帮助企业顺利实现从传统应用到智能应用的过渡。
破茧成蝶:传统J2EE应用无缝升级AI原生
一键部署 Dify + MCP Server,高效开发 AI 智能体应用
本文将着重介绍如何通过 SAE 快速搭建 Dify AI 研发平台,依托 Serverless 架构提供全托管、免运维的解决方案,高效开发 AI 智能体应用。
2526 64
破茧成蝶:阿里云应用服务器让传统J2EE应用无缝升级AI原生时代
一场跨越20年的技术对话:在杭州某科技园的会议室里,一场特殊的代码评审正在进行。屏幕上同时展示着2005年基于WebLogic开发的供应链系统和2025年接入DeepSeek大模型的智能调度方案——令人惊叹的是,二者的核心业务代码竟保持着惊人的一致性。"我们保住了20年积累的238个核心业务对象,就像修复传世名画时保留了每一笔历史痕迹。"企业CTO的感慨,揭开了阿里云应用服务器助力传统系统智能化转型的奥秘。
36 13

热门文章

最新文章