Yuxi-Know:开源智能问答系统,基于大模型RAG与知识图谱技术快速构建知识库

简介: Yuxi-Know是一个结合大模型RAG知识库与知识图谱技术的智能问答平台,支持多格式文档处理和复杂知识关系查询,具备多模型适配和智能体拓展能力。

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!

🥦 AI 在线答疑 -> 智能检索历史文章和开源项目 -> 丰富的 AI 工具库 -> 每日更新 -> 尽在微信公众号 -> 搜一搜:蚝油菜花 🥦


🎯 「知识管理新时代!开源神器让PDF秒变智能顾问,复杂问题一键图解」

大家好,我是蚝油菜花。你是否也经历过这些知识焦虑时刻——

  • 📚 百页技术文档读到头秃,关键信息像在玩捉迷藏
  • 🔍 查企业财报像破译密码,数据关联全靠脑内Excel
  • 🤖 用AI问答总被"超出知识范围"打脸,还得手动喂资料...

今天要拆解的 Yuxi-Know ,正在重定义知识获取方式!这个由开发者社区打造的开源核武器:

  • 文档吞噬者:PDF/TXT/MD全格式通吃,自动构建向量知识库
  • 关系挖掘机:Neo4j知识图谱让"北京是中国的首都"这种关联秒解
  • 模型百宝箱:OpenAI/智谱/DeepSeek等主流大模型即插即用
  • 智能体乐高:支持自定义代码扩展,打造专属AI知识管家

已有金融团队用它分析上市公司关联网络,教育机构靠它生成智能教材问答——你的知识库准备好升级到2.0版本了吗?

Yuxi-Know 是什么

Yuxi-Know

Yuxi-Know(语析)是基于大模型RAG知识库与知识图谱技术构建的智能问答平台。平台支持多种知识库文件格式(如PDF、TXT、MD、Docx),能将文件内容转换为向量存储实现快速检索,并集成基于Neo4j的知识图谱问答能力。

该系统采用多模型适配架构,兼容OpenAI、国内主流大模型及本地部署方案,支持开发者通过编写自定义智能体代码扩展功能。技术栈涵盖VueJS前端、FastAPI后端,以及Milvus向量数据库和Neo4j图数据库的深度整合。

Yuxi-Know 的主要功能

  • 多模型支持:适配OpenAI、智谱、DeepSeek等主流大模型API,支持本地vllm/ollama部署
  • 全格式知识库:支持PDF/TXT/MD/Docx文档自动向量化,构建可检索知识体系
  • 知识图谱引擎:基于Neo4j实现复杂关系查询,支持jsonl格式图谱文件导入
  • 智能体扩展:开放自定义智能体开发接口,支持功能模块化拓展
  • 混合检索系统:结合向量检索与重排序技术,提升问答准确率
  • 可视化配置:提供友好的网页管理界面,支持模型切换和知识库维护

Yuxi-Know 的技术原理

  • RAG架构:采用BAAI/bge-m3等向量模型处理文本,Milvus实现高效向量检索
  • 知识图谱:通过Neo4j存储实体关系,支持多跳查询和语义推理
  • 模型适配层:基于models.yaml配置实现多模型API的统一调度
  • 服务化部署:使用Docker容器化封装,包含前后端完整服务链
  • 动态加载:支持运行时添加本地模型服务,兼容vllm/ollama等框架

如何运行 Yuxi-Know

环境配置

  1. 复制.env.template.env文件
  2. 配置至少一个模型API_KEY,例如:
    SILICONFLOW_API_KEY=sk-xxx
    OPENAI_API_KEY=sk-xxx
    

启动服务

docker compose -f docker/docker-compose.dev.yml --env-file src/.env up --build

服务启动后访问http://localhost:5173/

服务管理

  • 后台运行:添加-d参数
  • 查看日志:docker logs <容器名称>
  • 停止服务:docker compose -f docker/docker-compose.dev.yml down

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!

🥦 AI 在线答疑 -> 智能检索历史文章和开源项目 -> 丰富的 AI 工具库 -> 每日更新 -> 尽在微信公众号 -> 搜一搜:蚝油菜花 🥦

相关文章
|
4月前
|
负载均衡 测试技术 调度
大模型分布式推理:张量并行与流水线并行技术
本文深入探讨大语言模型分布式推理的核心技术——张量并行与流水线并行。通过分析单GPU内存限制下的模型部署挑战,详细解析张量并行的矩阵分片策略、流水线并行的阶段划分机制,以及二者的混合并行架构。文章包含完整的分布式推理框架实现、通信优化策略和性能调优指南,为千亿参数大模型的分布式部署提供全面解决方案。
1036 4
|
4月前
|
机器学习/深度学习 缓存 监控
大模型推理优化技术:KV缓存机制详解
本文深入探讨了大语言模型推理过程中的关键技术——KV缓存(Key-Value Cache)机制。通过对Transformer自注意力机制的分析,阐述了KV缓存的工作原理、实现方式及其对推理性能的显著优化效果。文章包含具体的代码实现和性能对比数据,为开发者理解和应用这一关键技术提供实践指导。
1502 8
|
4月前
|
存储 机器学习/深度学习 人工智能
大模型微调技术:LoRA原理与实践
本文深入解析大语言模型微调中的关键技术——低秩自适应(LoRA)。通过分析全参数微调的计算瓶颈,详细阐述LoRA的数学原理、实现机制和优势特点。文章包含完整的PyTorch实现代码、性能对比实验以及实际应用场景,为开发者提供高效微调大模型的实践指南。
2573 2
|
4月前
|
人工智能 机器人 人机交互
当AI学会“看、听、懂”:多模态技术的现在与未来
当AI学会“看、听、懂”:多模态技术的现在与未来
348 117
|
4月前
|
人工智能 自然语言处理 安全
AI助教系统:基于大模型与智能体架构的新一代教育技术引擎
AI助教系统融合大语言模型、教育知识图谱、多模态交互与智能体架构,实现精准学情诊断、个性化辅导与主动教学。支持图文语音输入,本地化部署保障隐私,重构“教、学、评、辅”全链路,推动因材施教落地,助力教育数字化转型。(238字)
798 23
|
4月前
|
机器学习/深度学习 存储 并行计算
大模型推理加速技术:FlashAttention原理与实现
本文深入解析大语言模型推理加速的核心技术——FlashAttention。通过分析传统注意力机制的计算瓶颈,详细阐述FlashAttention的IO感知算法设计、前向反向传播实现,以及其在GPU内存层次结构中的优化策略。文章包含完整的CUDA实现示例、性能基准测试和实际部署指南,为开发者提供高效注意力计算的全套解决方案。
619 10
|
4月前
|
人工智能 文字识别 自然语言处理
从“看见”到“预见”:合合信息“多模态文本智能技术”如何引爆AI下一场革命。
近期,在第八届中国模式识别与计算机视觉学术会议(PRCV 2025)上,合合信息作为承办方举办了“多模态文本智能大模型前沿技术与应用”论坛,汇聚了学术界的顶尖智慧,更抛出了一颗重磅“炸弹”——“多模态文本智能技术”概念。
241 1
|
4月前
|
存储 人工智能 算法
大模型4-bit量化技术详解
本文系统阐述大语言模型的4-bit量化技术,深入解析GPTQ、AWQ等主流量化方法的原理与实现。通过详细的数学推导、代码实现和实验对比,展示4-bit量化如何将模型内存占用降低75%以上同时保持模型性能。文章涵盖量化感知训练、后训练量化、混合精度量化等关键技术,为开发者提供完整的模型压缩解决方案。
956 7
|
4月前
|
监控 算法 测试技术
大模型推理服务优化:动态批处理与连续批处理技术
本文系统阐述大语言模型推理服务中的关键技术——动态批处理与连续批处理。通过分析传统静态批处理的局限性,深入解析动态批处理的请求调度算法、内存管理策略,以及连续批处理的中断恢复机制。文章包含完整的服务架构设计、核心算法实现和性能基准测试,为构建高性能大模型推理服务提供全面解决方案。
582 3

热门文章

最新文章