通过阿里云Milvus与通义千问VL大模型,快速实现多模态搜索

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: 阿里云向量检索服务Milvus版是一款全托管向量检索引擎,并确保与开源Milvus的完全兼容性,支持无缝迁移。它在开源版本的基础上增强了可扩展性,能提供大规模AI向量数据的相似性检索服务。凭借其开箱即用的特性、灵活的扩展能力和全链路监控告警,Milvus云服务成为多样化AI应用场景的理想选择,包括多模态搜索、检索增强生成(RAG)、搜索推荐、内容风险识别等。您还可以利用开源的Attu工具进行可视化操作,进一步促进应用的快速开发和部署。

本文主要演示了如何使用阿里云向量检索服务Milvus版与通义千问VL大模型,提取图片特征,并使用多模态Embedding模型,快速实现多模态搜索。

基于灵积(Dashscope)模型服务上的通义千问 API以及Embedding API来接入图片、文本等非结构化数据Embedding为向量的能力。


前提条件


该示例的运行环境为python3.9

python3 -m pip install dashscope pymilvus==2.5.0
wget https://github.com/milvus-io/pymilvus-assets/releases/download/imagedata/reverse_image_search.zip
unzip -q -o reverse_image_search.zip


示例代码

在本文示例中,我们先将示例图片通过通义千问VL提取图片描述,存储在image_description中,然后将图片描述和图片通过多模态Embedding模型分别转换为向量存储在image_embedding和text_embedding中。

备注:在该示例中,仅以数据集前200张图片作为演示

import base64
import csv
import dashscope
import os
import pandas as pd
import sys
import time
from tqdm import tqdm
from pymilvus import (
    connections,
    FieldSchema,
    CollectionSchema,
    DataType,
    Collection,
    MilvusException,
    utility,
)
from http import HTTPStatus
import logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class FeatureExtractor:
    def __init__(self, DASHSCOPE_API_KEY):
        self._api_key = DASHSCOPE_API_KEY  # 使用环境变量存储API密钥
    def __call__(self, input_data, input_type):
        if input_type not in ("image", "text"):
            raise ValueError("Invalid input type. Must be 'image' or 'text'.")
        try:
            if input_type == "image":
                _, ext = os.path.splitext(input_data)
                image_format = ext.lstrip(".").lower()
                with open(input_data, "rb") as image_file:
                    base64_image = base64.b64encode(image_file.read()).decode("utf-8")
                input_data = f"data:image/{image_format};base64,{base64_image}"
                payload = [{"image": input_data}]
            else:
                payload = [{"text": input_data}]
            resp = dashscope.MultiModalEmbedding.call(
                model="multimodal-embedding-v1",
                input=payload,
                api_key=self._api_key,
            )
            if resp.status_code == HTTPStatus.OK:
                return resp.output["embeddings"][0]["embedding"]
            else:
                raise RuntimeError(
                    f"API调用失败,状态码: {resp.status_code}, 错误信息: {resp.message}"
                )
        except Exception as e:
            logger.error(f"处理失败: {str(e)}")
            raise
class FeatureExtractorVL:
    def __init__(self, DASHSCOPE_API_KEY):
        self._api_key = DASHSCOPE_API_KEY  # 使用环境变量存储API密钥
    def __call__(self, input_data, input_type):
        if input_type not in ("image"):
            raise ValueError("Invalid input type. Must be 'image'.")
        try:
            if input_type == "image":
                payload=[
                            {
                                "role": "system",
                                "content": [{"type":"text","text": "You are a helpful assistant."}]
                            },
                            {
                                "role": "user",
                                "content": [
                                            # {"image": "https://dashscope.oss-cn-beijing.aliyuncs.com/images/dog_and_girl.jpeg"},
                                            {"image": input_data},
                                            {"text": "先用50字内的文字描述这张图片,然后再给出5个关键词"}
                                            ],
                            }
                        ]
            resp = dashscope.MultiModalConversation.call(
                model="qwen-vl-plus",
                messages=payload,
                api_key=self._api_key,
            )
            if resp.status_code == HTTPStatus.OK:
                return resp.output["choices"][0]["message"].content[0]["text"]
            else:
                raise RuntimeError(
                    f"API调用失败,状态码: {resp.status_code}, 错误信息: {resp.message}"
                )
        except Exception as e:
            logger.error(f"处理失败: {str(e)}")
            raise
class MilvusClient:
    def __init__(self, MILVUS_TOKEN, MILVUS_HOST, MILVUS_PORT, INDEX, COLLECTION_NAME):
        self._token = MILVUS_TOKEN
        self._host = MILVUS_HOST
        self._port = MILVUS_PORT
        self._index = INDEX
        self._collection_name = COLLECTION_NAME
        self._connect()
        self._create_collection_if_not_exists()
    def _connect(self):
        try:
            connections.connect(alias="default", host=self._host, port=self._port, token=self._token)
            logger.info("Connected to Milvus successfully.")
        except Exception as e:
            logger.error(f"连接Milvus失败: {str(e)}")
            sys.exit(1)
    def _collection_exists(self):
        return self._collection_name in utility.list_collections()
    
    def _create_collection_if_not_exists(self):
        try:
            if not self._collection_exists():
                fields = [
                    FieldSchema(name="id", dtype=DataType.INT64, is_primary=True, auto_id=True),
                    FieldSchema(name="origin", dtype=DataType.VARCHAR, max_length=512),
                    FieldSchema(name="image_description", dtype=DataType.VARCHAR, max_length=1024),
                    FieldSchema(name="image_embedding", dtype=DataType.FLOAT_VECTOR, dim=1024),
                    FieldSchema(name="text_embedding", dtype=DataType.FLOAT_VECTOR, dim=1024)
                ]
                schema = CollectionSchema(fields)
                self._collection = Collection(self._collection_name, schema)
                if self._index == 'IVF_FLAT':
                    self._create_ivf_index()
                else:
                    self._create_hnsw_index()   
                logger.info("Collection created successfully.")
            else:
                self._collection = Collection(self._collection_name)
                logger.info("Collection already exists.")
        except Exception as e:
            logger.error(f"创建或加载集合失败: {str(e)}")
            sys.exit(1)
    def _create_ivf_index(self):
        index_params = {
            "index_type": "IVF_FLAT",
            "params": {
                        "nlist": 1024, # Number of clusters for the index
                    },
            "metric_type": "L2",
        }
        self._collection.create_index("image_embedding", index_params)
        self._collection.create_index("text_embedding", index_params)
        logger.info("Index created successfully.")
    def _create_hnsw_index(self):
        index_params = {
            "index_type": "HNSW",
            "params": {
                        "M": 64, # Maximum number of neighbors each node can connect to in the graph
                        "efConstruction": 100, # Number of candidate neighbors considered for connection during index construction
                    },
            "metric_type": "L2",
        }
        self._collection.create_index("image_embedding", index_params)
        self._collection.create_index("text_embedding", index_params)
        logger.info("Index created successfully.")
    
    def insert(self, data):
        try:
            self._collection.insert(data)
            self._collection.load()
            logger.info("数据插入并加载成功.")
        except MilvusException as e:
            logger.error(f"插入数据失败: {str(e)}")
            raise
    def search(self, query_embedding, feild, limit=3):
        try:
            if self._index == 'IVF_FLAT':
                param={"metric_type": "L2", "params": {"nprobe": 10}}
            else:
                param={"metric_type": "L2", "params": {"ef": 10}}
            result = self._collection.search(
                data=[query_embedding],
                anns_field=feild,
                param=param,
                limit=limit,
                output_fields=["origin", "image_description"],
            )
            return [{"id": hit.id, "distance": hit.distance, "origin": hit.origin, "image_description": hit.image_description} for hit in result[0]]
        except Exception as e:
            logger.error(f"搜索失败: {str(e)}")
            return None
def load_image_embeddings(extractor, extractorVL, csv_path):
    df = pd.read_csv(csv_path)
    image_embeddings = {}
    for image_path in tqdm(df["path"].tolist()[:200], desc="生成图像embedding"): # 仅用前100张图进行演示
        try:
            desc = extractorVL(image_path, "image")
            image_embeddings[image_path] = [desc, extractor(image_path, "image"), extractor(desc, "text")]
            time.sleep(1)  # 控制API调用频率
        except Exception as e:
            logger.warning(f"处理{image_path}失败,已跳过: {str(e)}")
    return [{"origin": k, 'image_description':v[0], "image_embedding": v[1], 'text_embedding': v[2]} for k, v in image_embeddings.items()]


数据准备

if __name__ == "__main__":
    MILVUS_HOST = "c-xxxxxxxxxxxx.milvus.aliyuncs.com"
    MILVUS_PORT = "19530"
    MILVUS_TOKEN = "root:password"
    COLLECTION_NAME = "multimodal_search"
    INDEX = "IVF_FLAT" # IVF_FLAT OR HNSW
    # Step1:初始化Milvus客户端
    milvus_client = MilvusClient(MILVUS_TOKEN, MILVUS_HOST, MILVUS_PORT, INDEX, COLLECTION_NAME)
  
    DASHSCOPE_API_KEY = ""
    # Step2:初始化千问VL大模型与多模态Embedding模型
    extractor = FeatureExtractor(DASHSCOPE_API_KEY)
    extractorVL = FeatureExtractorVL(DASHSCOPE_API_KEY)
    # Step3:将图片数据集Embedding后插入到Milvus
    embeddings = load_image_embeddings(extractor, extractorVL, "reverse_image_search.csv")
    milvus_client.insert(embeddings)


在Step1中将Collection创建完成后,可以在控制台登录Attu,查看Collection Schema信息,如下图所示。


在完成Step3后,可以在Attu中查看插入数据,此时图片数据已经过通义千问VL大模型提取描述特征,并Embedding为向量。


可以看出下图经过通义千问VL大模型提取后,文本总结为“站在海滩上的人穿着牛仔裤和绿色靴子。

沙滩上有水迹覆盖。关键词:“海滩、脚印、沙地、鞋子、裤子”,用文字非常形象的描述了这张图片的特征。

图:jean/n03594734_9714.JPEG


多模态量检索:以文搜图

在下面这个这个示例中,查询文本query为"棕色的狗",将query通过多模态向量模型Embedding以后,分别在image_embedding和text_embedding上进行以文搜图和以文搜文,可以得到不同的检索结果。

注意:由于大模型产出结果存在一定的随机性,本示例结果可能无法完全一致的复现。

if __name__ == "__main__":
    MILVUS_HOST = "c-xxxxxxxxxxxx.milvus.aliyuncs.com"
    MILVUS_PORT = "19530"
    MILVUS_TOKEN = "root:password"
    COLLECTION_NAME = "multimodal_search"
    INDEX = "IVF_FLAT" # IVF_FLAT OR HNSW
    # Step1:初始化Milvus客户端
    milvus_client = MilvusClient(MILVUS_TOKEN, MILVUS_HOST, MILVUS_PORT, INDEX, COLLECTION_NAME)
  
    DASHSCOPE_API_KEY = ""
    # Step2:初始化多模态Embedding模型
    extractor = FeatureExtractor(DASHSCOPE_API_KEY)
    # Step4:多模态搜索示例,以文搜图和以文搜文
    text_query = "棕色的狗"
    text_embedding = extractor(text_query, "text")
    text_results_1 = milvus_client.search(text_embedding, feild = 'image_embedding')
    logger.info(f"以文搜图查询结果: {text_results_1}")
    text_results_2 = milvus_client.search(text_embedding, feild = 'text_embedding')
    logger.info(f"以文搜文查询结果: {text_results_2}")
"""
以文搜图查询结果
{'id': 457336885198973657, 'distance': 1.338853359222412, 'origin': './train/Rhodesian_ridgeback/n02087394_9675.JPEG', 'image_description': '一张小狗站在地毯上的照片。它有着棕色的毛发和蓝色的眼睛。\n关键词:小狗、地毯、眼睛、毛色、站立'}, 
{'id': 457336885198973648, 'distance': 1.3568601608276367, 'origin': './train/Rhodesian_ridgeback/n02087394_6382.JPEG', 'image_description': '这是一只棕色的猎犬,耳朵垂下,脖子上戴着项圈。它正直视前方。\n\n关键词:狗、棕色、猎犬、耳朵、项链'},
{'id': 457336885198973655, 'distance': 1.3838427066802979, 'origin': './train/Rhodesian_ridgeback/n02087394_5846.JPEG', 'image_description': '两只小狗在毛毯上玩耍。一只狗躺在另一只上面,背景中有一个玩具熊。\n\n关键词:小狗、玩闹、毛毯、玩具熊、互动'}
"""
"""
以文搜文查询结果
[{'id': 457336885198973739, 'distance': 0.6969608068466187, 'origin': './train/mongoose/n02137549_7552.JPEG', 'image_description': '这是一张棕色的小动物的特写照片。它有着圆润的脸庞和大大的眼睛。\n\n关键词:小动物、棕毛、圆形脸、大眼、自然背景'}, 
{'id': 457336885198973648, 'distance': 0.7110348343849182, 'origin': './train/Rhodesian_ridgeback/n02087394_6382.JPEG', 'image_description': '这是一只棕色的猎犬,耳朵垂下,脖子上戴着项圈。它正直视前方。\n\n关键词:狗、棕色、猎犬、耳朵、项链'}, 
{'id': 457336885198973707, 'distance': 0.7725887298583984, 'origin': './train/lion/n02129165_19310.JPEG', 'image_description': '这是一张狮子的特写照片。它有着浓密的鬃毛和锐利的眼神。\n\n关键词:狮子、眼神、鬃毛、自然环境、野生动物'}
"""


多模态向量检索:以图搜文

在下面这个这个示例中,我们使用test中的狮子图片进行相似性检索,分别进行以图搜图和以图搜文。

图:lion/n02129165_13728.JPEG


注意:由于大模型产出结果存在一定的随机性,本示例结果可能无法完全一致的复现。

if __name__ == "__main__":
    MILVUS_HOST = "c-xxxxxxxxxxxx.milvus.aliyuncs.com"
    MILVUS_PORT = "19530"
    MILVUS_TOKEN = "root:password"
    COLLECTION_NAME = "multimodal_search"
    INDEX = "IVF_FLAT" # IVF_FLAT OR HNSW
    # Step1:初始化Milvus客户端
    milvus_client = MilvusClient(MILVUS_TOKEN, MILVUS_HOST, MILVUS_PORT, INDEX, COLLECTION_NAME)
  
    DASHSCOPE_API_KEY = ""
    # Step2:初始化多模态Embedding模型
    extractor = FeatureExtractor(DASHSCOPE_API_KEY)
    # Step5:多模态搜索示例,以图搜图和以图搜文
    image_query_path = "./test/lion/n02129165_13728.JPEG"
    image_embedding = extractor(image_query_path, "image")
    image_results_1 = milvus_client.search(image_embedding, feild = 'image_embedding')
    logger.info(f"以图搜图查询结果: {image_results_1}")
    image_results_2 = milvus_client.search(image_embedding, feild = 'text_embedding')
    logger.info(f"以图搜文查询结果: {image_results_2}")
"""
以图搜图查询结果
{'id': 457336885198973702, 'distance': 0.23892249166965485, 'origin': './train/lion/n02129165_19953.JPEG', 'image_description': '这是一只雄壮的狮子站在岩石旁,背景是树木和灌木丛。阳光洒在它的身上。\n\n关键词:狮子、岩石、森林、阳光、野性'},
{'id': 457336885198973704, 'distance': 0.4113130569458008, 'origin': './train/lion/n02129165_1142.JPEG', 'image_description': '一只狮子在茂密的绿色植物中休息。背景是竹子和树木。\n\n关键词:狮子、草地、绿植、树干、自然环境'}, 
{'id': 457336885198973699, 'distance': 0.5206397175788879, 'origin': './train/lion/n02129165_16.JPEG', 'image_description': '图中是一对狮子在草地上站立。雄狮鬃毛浓密,雌狮则显得更为瘦弱。\n\n关键词:狮子、草地、雄性、雌性、自然环境'}
"""
"""
以图搜文查询结果
{'id': 457336885198973704, 'distance': 1.0935896635055542, 'origin': './train/lion/n02129165_1142.JPEG', 'image_description': '一只狮子在茂密的绿色植物中休息。背景是竹子和树木。\n\n关键词:狮子、草地、绿植、树干、自然环境'}, 
{'id': 457336885198973702, 'distance': 1.2102885246276855, 'origin': './train/lion/n02129165_19953.JPEG', 'image_description': '这是一只雄壮的狮子站在岩石旁,背景是树木和灌木丛。阳光洒在它的身上。\n\n关键词:狮子、岩石、森林、阳光、野性'},
{'id': 457336885198973707, 'distance': 1.2725986242294312, 'origin': './train/lion/n02129165_19310.JPEG', 'image_description': '这是一张狮子的特写照片。它有着浓密的鬃毛和锐利的眼神。\n\n关键词:狮子、眼神、鬃毛、自然环境、野生动物'}
"""




import base64
import csv
import dashscope
import os
import pandas as pd
import sys
import time
from tqdm import tqdm
from pymilvus import (
    connections,
    FieldSchema,
    CollectionSchema,
    DataType,
    Collection,
    MilvusException,
    utility
)
from http import HTTPStatus
import logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class FeatureExtractor:
    def __init__(self):
        self._api_key = os.getenv("DASHSCOPE_API_KEY")  # 使用环境变量存储API密钥
    def __call__(self, input_data, input_type):
        if input_type not in ("image", "text"):
            raise ValueError("Invalid input type. Must be 'image' or 'text'.")
        try:
            if input_type == "image":
                _, ext = os.path.splitext(input_data)
                image_format = ext.lstrip(".").lower()
                with open(input_data, "rb") as image_file:
                    base64_image = base64.b64encode(image_file.read()).decode("utf-8")
                input_data = f"data:image/{image_format};base64,{base64_image}"
                payload = [{"image": input_data}]
            else:
                payload = [{"text": input_data}]
            resp = dashscope.MultiModalEmbedding.call(
                model="multimodal-embedding-v1",
                input=payload,
                api_key=self._api_key,
            )
            if resp.status_code == HTTPStatus.OK:
                return resp.output["embeddings"][0]["embedding"]
            else:
                raise RuntimeError(
                    f"API调用失败,状态码: {resp.status_code}, 错误信息: {resp.message}"
                )
        except Exception as e:
            logger.error(f"处理失败: {str(e)}")
            raise
class MilvusClient:
    def __init__(self):
        self._token = os.getenv("MILVUS_TOKEN")
        self._host = os.getenv("MILVUS_HOST")
        self._port = os.getenv("MILVUS_PORT", "19530")
        self._collection_name = "multimodal_search"
        self._connect()
        self._create_collection_if_not_exists()
    def _connect(self):
        try:
            connections.connect(alias="default", host=self._host, port=self._port, token=self._token)
            logger.info("Connected to Milvus successfully.")
        except Exception as e:
            logger.error(f"连接Milvus失败: {str(e)}")
            sys.exit(1)
    def _collection_exists(self):
        return self._collection_name in utility.list_collections()
    def _create_index(self):
        index_params = {
            "index_type": "IVF_FLAT",
            "params": {"nlist": 1024},
            "metric_type": "L2",
        }
        self._collection.create_index("embedding", index_params)
        logger.info("Index created successfully.")
    def _create_collection_if_not_exists(self):
        try:
            if not self._collection_exists():
                fields = [
                    FieldSchema(name="id", dtype=DataType.INT64, is_primary=True, auto_id=True),
                    FieldSchema(name="embedding", dtype=DataType.FLOAT_VECTOR, dim=1024),
                    FieldSchema(name="origin", dtype=DataType.VARCHAR, max_length=512),
                ]
                schema = CollectionSchema(fields)
                self._collection = Collection(self._collection_name, schema)
                self._create_index()
                logger.info("Collection created successfully.")
            else:
                self._collection = Collection(self._collection_name)
                logger.info("Collection already exists.")
        except Exception as e:
            logger.error(f"创建或加载集合失败: {str(e)}")
            sys.exit(1)
    def insert(self, data):
        try:
            self._collection.insert(data)
            self._collection.load()
            logger.info("数据插入并加载成功.")
        except MilvusException as e:
            logger.error(f"插入数据失败: {str(e)}")
            raise
    def search(self, query_embedding, limit=10):
        try:
            result = self._collection.search(
                data=[query_embedding],
                anns_field="embedding",
                param={"metric_type": "L2", "params": {"nprobe": 10}},
                limit=limit,
                output_fields=["origin"],
            )
            return [{"id": hit.id, "distance": hit.distance, "origin": hit.origin} for hit in result[0]]
        except Exception as e:
            logger.error(f"搜索失败: {str(e)}")
            return None
def load_image_embeddings(extractor, csv_path):
    df = pd.read_csv(csv_path)
    image_embeddings = {}
    for image_path in tqdm(df["path"].tolist(), desc="生成图像嵌入"):
        try:
            image_embeddings[image_path] = extractor(image_path, "image")
            time.sleep(0.6)  # 控制API调用频率
        except Exception as e:
            logger.warning(f"处理{image_path}失败,已跳过: {str(e)}")
    return [{"origin": k, "embedding": v} for k, v in image_embeddings.items()]
def main():
    # 初始化Milvus客户端
    milvus_client = MilvusClient()
    # 初始化特征提取器
    extractor = FeatureExtractor()
    ## 1. 将图片数据集Embedding后插入到Milvus
    embeddings = load_image_embeddings(extractor, "reverse_image_search.csv")
    milvus_client.insert(embeddings)
    # 2. 执行搜索测试
    # 示例:以文搜图
    text_query = "木质折叠椅"
    text_embedding = extractor(text_query, "text")
    text_results = milvus_client.search(text_embedding)
    logger.info(f"以文搜图查询结果: {text_results}")
    # 示例:以图搜图
    image_query_path = "./test/Airedale/n02096051_4092.JPEG"
    image_embedding = extractor(image_query_path, "image")
    image_results = milvus_client.search(image_embedding)
    logger.info(f"以图搜图查询结果: {image_results}")
if __name__ == "__main__":
    main()


立即体验

如果您想体验阿里云Milvus的相关能力,欢迎在阿里云官网搜索向量检索服务Milvus版进行体验。

产品新用户也可免费领取1个月试用资格

此外,阿里云为了回馈新老用户,推出了重大优惠

阿里云向量检索服务 Milvus 版  限时年付5折! 新购续费均可|每个uid仅限参与1次(非同人)购买地址

目录
打赏
0
2
2
0
131
分享
相关文章
革新智能驾驶数据挖掘检索效率!某国内新能源汽车未来出行领导者选择阿里云Milvus构建多模态检索引擎
在智能驾驶技术快速发展中,数据成为驱动算法进步的核心。某新能源汽车领军企业基于阿里云Milvus向量数据库构建智能驾驶数据挖掘平台,利用其高性能、可扩展的相似性检索服务,解决了大规模向量数据检索瓶颈问题,显著降低20%以上成本,缩短模型迭代周期,实现从数据采集到场景挖掘的智能化闭环,加速智能驾驶落地应用。
革新智能驾驶数据挖掘检索效率!某国内新能源汽车未来出行领导者选择阿里云Milvus构建多模态检索引擎
阿里云AirCache技术实现多模态大模型高效推理加速,入选国际顶会ICCV2025
阿里云研发的AirCache技术被计算机视觉顶会ICCV2025收录,该技术通过激活跨模态关联、优化KV缓存压缩策略,显著提升视觉语言模型(VLMs)的推理效率与存储性能。实验表明,在保留仅10%视觉缓存的情况下,模型性能下降小于1%,解码延迟最高降低66%,吞吐量提升达192%。AirCache无需修改模型结构,兼容主流VLMs,已在教育、医疗、政务等多个行业落地应用,助力多模态大模型高效赋能产业智能化升级。
挑战杯专属支持资源|阿里云-AI大模型算力及实验资源丨云工开物
阿里云发起的“云工开物”高校支持计划,助力AI时代人才培养与科研创新。为“挑战杯”参赛选手提供专属算力资源、AI模型平台及学习训练资源,包括300元免费算力券、百炼大模型服务、PAI-ArtLab设计平台等,帮助学生快速掌握AI技能并构建优秀作品,推动产学研融合发展。访问链接领取资源:https://university.aliyun.com/action/tiaozhanbei。
多模态数据处理新趋势:阿里云ODPS技术栈深度解析与未来展望
阿里云ODPS技术栈通过MaxCompute、Object Table与MaxFrame等核心组件,实现了多模态数据的高效处理与智能分析。该架构支持结构化与非结构化数据的统一管理,并深度融合AI能力,显著降低了分布式计算门槛,推动企业数字化转型。未来,其在智慧城市、数字医疗、智能制造等领域具有广泛应用前景。
74 6
多模态数据处理新趋势:阿里云ODPS技术栈深度解析与未来展望
1688图片搜索逆向工程与多模态搜索融合实践——基于CLIP模型的特征向
本文介绍了通过逆向工程分析实现图片搜索的技术方案,包括请求特征捕获、签名算法破解及多模态搜索的实现。利用CLIP模型提取图像特征,并结合Faiss优化相似度计算,提升搜索效率。最后提供完整调用示例,模拟实现非官方API的图片搜索功能。
Scale Up!阿里云让大模型一体机真正实现“算得快”、“用得好”
当前,人工智能技术快速发展,中国智能计算市场进入成长期。大模型推理场景面临实时性、负载均衡与成本控制等多重挑战。阿里云通过芯片算子库升级、模型量化创新及推理引擎优化,实现性能加速,并应用于AI Stack训推一体机和百炼专属版等产品,支持大规模模型高效运行,显著提升性价比与用户体验。
安全领航!阿里云AI Stack一体机首批通过国家信通院大模型安全能力认证
在人工智能深度渗透千行百业的当下,阿里云AI Stack一体机首批通过中国信通院《大模型一体机安全能力要求》标准评估,成为国内首批在系统架构上达标的标杆产品,标志着企业级大模型部署迈入安全可信新阶段。
124 0
再不玩通义 VACE 模型你就过时了!一个模型搞定所有视频任务
介绍通义的开源模型在 ecs 或 acs 场景如何一键部署和使用,如何解决不同视频生成场景的问题。

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问