PaperBench:OpenAI开源AI智能体评测基准,8316节点精准考核复现能力

本文涉及的产品
NLP自然语言处理_高级版,每接口累计50万次
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_基础版,每接口每天50万次
简介: PaperBench是OpenAI推出的开源评测框架,通过8316个评分节点系统评估AI智能体复现学术论文的能力,涵盖理论理解、代码实现到实验执行全流程。

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!

🥦 AI 在线答疑 -> 智能检索历史文章和开源项目 -> 丰富的 AI 工具库 -> 每日更新 -> 尽在微信公众号 -> 搜一搜:蚝油菜花 🥦


💻 「学术圈地震!OpenAI放出论文复现「照妖镜」,8316项测试让AI原形毕露」

大家好,我是蚝油菜花。当ChatGPT还在用漂亮话应付论文提问时,这个来自OpenAI的核弹级评测框架,正在用显微镜级标准检验AI的真实学术能力!

你是否也遭遇过这些AI幻觉暴击:

  • 📜 让AI解释论文创新点,结果把参考文献编成科幻小说
  • 💻 代码生成看似完美,一运行直接内核崩溃
  • 📊 实验数据漂亮得不像话,查原始论文发现全是虚构...

今天解密的 PaperBench ,正在重定义AI能力评估!这个包含8316个评分节点的「学术CT机」:

  • ✅ 从理论理解到实验复现,全程自动化追踪每个细节
  • ✅ 用Docker容器锁死测试环境,杜绝「本地能跑」式作弊
  • ✅ 轻量版+完整版双模式,既适合快速验证也支持深度调优

已有团队用它发现GPT-4在长期任务规划上的致命缺陷——你的AI模型准备好接受学术级「压力测试」了吗?

🚀 快速阅读

PaperBench是OpenAI开源的AI智能体系统性评测框架。

  1. 功能:通过复现学术论文全流程,评估智能体的理论理解、代码实现和实验执行能力。
  2. 技术:采用层次化评分树和自动化评分系统,在标准化Docker环境中确保测试一致性。

PaperBench 是什么

preparedness

PaperBench是专为评估AI智能体复现学术论文能力设计的开源基准测试。它要求智能体完成从论文理解、代码开发到实验执行的全流程任务,通过8316个精细化评分节点全面量化智能体的学术实践能力。

评测结果显示,当前主流AI模型在复杂任务规划和长期执行方面仍显著落后人类专家。该框架采用Docker容器统一测试环境,并开发了基于大模型的自动评分系统,其评分结果与人类专家评估具有高度一致性。

PaperBench 的主要功能

  • 全流程评估:覆盖论文理解、代码实现、实验执行完整复现链条。
  • 自动化评分:8316节点层次化评分树结合大模型自动评分。
  • 环境标准化:Ubuntu 24.04 Docker容器保证测试一致性。
  • 资源可控:限制GPU和API使用,确保评估反映真实能力。
  • 轻量级变体:提供简化版评估方案降低参与门槛。

PaperBench 的技术原理

  • 任务模块:定义理论解析、代码生成、实验执行三类核心任务。
  • 评分体系:树状结构细分8316个评分节点,自动评分系统经人类专家校准。
  • 容器化隔离:基于Docker的测试环境配备A10 GPU和可控API访问。
  • 智能体配置:支持SimpleAgent/IterativeAgent等不同工作模式对比研究。

如何运行 PaperBench

系统要求

  • Python 3.11(3.12未测试,3.13会破坏chz组件)

安装依赖

for proj in nanoeval alcatraz nanoeval_alcatraz; do
    pip install -e project/"$proj"
done
AI 代码解读

可用评测集

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!

🥦 AI 在线答疑 -> 智能检索历史文章和开源项目 -> 丰富的 AI 工具库 -> 每日更新 -> 尽在微信公众号 -> 搜一搜:蚝油菜花 🥦

目录
打赏
0
30
30
9
401
分享
相关文章
基于OpenAPI和AI coding的上云智能体构建实践
本文探讨了基于LLM和AI编程技术构建上云智能体的实践,提出通过人在回路中设计整体流程、LLM自主决策与执行的方式,有效减少幻觉并提升任务正确率。方案在多轮迭代中逐步生成代码,解决了API参数依赖等问题,并验证了三大核心设计理念的可行性。
基于OpenAPI和AI coding的上云智能体构建实践
企业AI落地开源五剑客:Open-WebUI、Dify、RAGFlow、FastGPT、n8n
在AI技术迅猛发展的今天,企业常面临数据安全、技术门槛和系统整合等难题。本文介绍了五款开源工具——Open WebUI、Dify、RAGFlow、FastGPT和n8n,它们以低成本、私有化部署和模块化扩展的优势,助力企业构建AI能力闭环,覆盖交互、生成、知识处理与流程自动化等多个环节,推动AI真正落地应用。
|
11天前
|
还在配置规则文件和智能体?Roo Commander:预置90+领域专家,开箱即用的AI编程新体验
Roo指挥官是一款创新AI编程助手,通过智能调度90多位虚拟技术专家,实现对复杂项目的自主规划与高效执行。用户无需手动选择专家或反复调整提示,只需提交需求,系统即可自动分析、拆解任务并协调最合适的技术角色完成开发。文中以构建3D互动简历为例,展示了其从需求分析到项目落地的全流程自动化能力,显著提升开发效率,开启AI驱动的智能化编程新体验。
42 0
AI智能体从请求到响应,这系统过程中究竟藏着什么?
三桥君带你深入解析AI智能体从用户请求到生成响应的全流程,涵盖接入服务、智能体应用、知识检索、模型重排、LLM调用与工具执行等关键技术环节,揭开AI背后的运作原理。
59 2
高校实验实训课程开发:基于现有的硬件基础和开源能力研发最前沿的AI实验课程
更多基于学校现有硬件基础:企业需求场景的开发和发展,更加注重上层数据和应用,各类工具软件的出现,极大提升了各类硬件的应用价值。我们看到各类硬件厂商,想方设法把硬件卖给学校,但是很多硬件不是在那里尘封,就是寥寥无几的使用场景,我们希望基于学校现有的硬件基础去开发更多面向不同行业或专业的实验实训课程,物尽其用。基于学校现有的硬件,集约开发,极大降低硬件投入成本。
52 7
猫头虎 推荐:国产开源AI工具 爱派(AiPy)|支持本地部署、自动化操作本地文件的AI办公神器
爱派(AiPy)是一款国产开源AI工具,支持本地部署与自动化操作,助力数据处理与办公效率提升。基于Python Use理念,AiPy让AI直接控制本地文件,简化繁琐任务,提供高效智能的解决方案,适用于数据工程师、分析师及日常办公用户。
219 0
真·零门槛!原来手搓AI应用这么简单
这是一篇关于如何创作小红书爆款文案的专业指南,涵盖标题技巧、正文结构、情绪表达及关键词运用。内容包括高吸引力标题公式、正文六种开篇模板、关键词库和写作规则,帮助用户高效打造高转化文案。
Open WebUI 和 Dify 在构建企业AI应用时的主要区别
本文对比了企业AI应用构建中的两大开源工具——Open WebUI与Dify,在技术架构、核心能力及适用场景方面的差异。Open WebUI适合轻量级对话场景,侧重本地部署与基础功能;而Dify则聚焦复杂业务流程,提供可视化工作流编排与端到端RAG支持。文章结合典型用例与落地建议,助力企业合理选型并实现高效AI集成。
Open WebUI 和 Dify 在构建企业AI应用时的主要区别
Open WebUI与Dify是企业AI落地的两大开源方案,定位差异显著。Open WebUI专注零代码交互界面开发,适合快速部署对话式前端;Dify提供全栈低代码平台,支持AI应用全生命周期管理。前者优势在轻量化UI组件,后者强于复杂业务编排与企业级功能。企业可根据需求选择前端工具或完整解决方案,亦可组合使用实现最优效果。

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问