TripoSF:3D建模内存暴降80%!VAST AI新一代模型细节狂飙82%

本文涉及的产品
视觉智能开放平台,图像通用资源包5000点
视觉智能开放平台,分割抠图1万点
视觉智能开放平台,视频通用资源包5000点
简介: TripoSF 是 VAST AI 推出的新一代 3D 基础模型,采用创新的 SparseFlex 表示方法,支持 1024³ 高分辨率建模,内存占用降低 82%,在细节捕捉和复杂结构处理上表现优异。

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!

🥦 AI 在线答疑 -> 智能检索历史文章和开源项目 -> 丰富的 AI 工具库 -> 每日更新 -> 尽在微信公众号 -> 搜一搜:蚝油菜花 🥦


🖌️ 「别让建模软件吃内存!AI把3D精度压缩到原子级」

大家好,我是蚝油菜花。这些数字雕刻的至暗时刻你是否正在经历——

  • 👉 建个植物模型,叶片脉络还没雕完显卡先冒烟
  • 👉 做服装设计时布料物理模拟,每次预览都像等世纪大巴
  • 👉 想渲染金属锈蚀细节,结果输出像被马赛克糊脸...

今天要炸裂三维界的 TripoSF ,正在重写建模物理法则!这把「数字雕刻刀」:

  • ✅ 量子级精度:Chamfer Distance暴降82%,毛孔级细节全保留
  • ✅ 内存瘦身术:稀疏体素黑科技让显存占用直降80%+
  • ✅ 拓扑自由派:从镂空雕塑到机械内构,开放结构一键生成

已有动画巨头用它制作电影级毛发,工业设计靠AI实现微米级零件——你的创造力,是时候突破「三维像素狱」了!

🚀 快速阅读

TripoSF 是 VAST AI 推出的新一代 3D 基础模型。

  1. 核心功能:支持 1024³ 超高分辨率建模,内存占用降低 82%,原生处理任意拓扑结构
  2. 技术原理:采用 SparseFlex 稀疏体素表示法,结合视锥体感知训练策略,实现高效计算

TripoSF 是什么

TripoSF

TripoSF 是 VAST AI 推出的新一代 3D 基础模型,突破了传统 3D 建模在细节、复杂结构和扩展性上的瓶颈。它采用创新的 SparseFlex 表示方法,仅在物体表面附近存储体素信息,大幅降低内存占用。

该模型支持 1024³ 超高分辨率训练和推理,在多个基准测试中表现优异。实验数据显示,TripoSF 的 Chamfer Distance 降低约 82%,F-score 提升约 88%,为 3D 建模领域带来了质的飞跃。

TripoSF 的主要功能

  • 细节捕捉能力:能精确捕捉微观表面细节,Chamfer Distance 指标提升 82%
  • 拓扑结构支持:原生支持开放表面和内部结构,完美处理布料、叶片等复杂形态
  • 高效计算:通过稀疏体素结构降低 80%+ 内存占用,支持 1024³ 高分辨率
  • 实时渲染:采用视锥体感知训练策略,可直接用渲染损失进行端到端训练

TripoSF 的技术原理

  • SparseFlex 表示法:稀疏体素结构仅存储表面附近数据,内存占用仅为传统方法的 1/5
  • 视锥体感知训练:动态激活相机视野内的体素,训练效率提升 3 倍以上
  • 变分自编码器:构建完整处理流程,从输入到输出保持高保真度

如何运行 TripoSF

1. 系统要求

  • CUDA 显卡(≥12GB 显存)
  • PyTorch 2.0+

2. 安装

git clone https://github.com/VAST-AI-Research/TripoSF.git
cd TripoSF
pip install torch torchvision
pip install -r requirements.txt

3. 使用预训练模型

  1. 从 HuggingFace 下载模型
  2. 放入 ckpts/ 目录
  3. 运行推理:
    python inference.py --mesh-path "assets/examples/jacket.obj" \
                    --output-dir "outputs/" \
                    --config "configs/TripoSFVAE_1024.yaml"
    

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!

🥦 AI 在线答疑 -> 智能检索历史文章和开源项目 -> 丰富的 AI 工具库 -> 每日更新 -> 尽在微信公众号 -> 搜一搜:蚝油菜花 🥦

相关文章
|
1月前
|
云安全 人工智能 自然语言处理
阿里云x硅基流动:AI安全护栏助力构建可信模型生态
阿里云AI安全护栏:大模型的“智能过滤系统”。
|
2月前
|
人工智能 自然语言处理 IDE
模型微调不再被代码难住!PAI和Qwen3-Coder加速AI开发新体验
通义千问 AI 编程大模型 Qwen3-Coder 正式开源,阿里云人工智能平台 PAI 支持云上一键部署 Qwen3-Coder 模型,并可在交互式建模环境中使用 Qwen3-Coder 模型。
674 109
|
2月前
|
机器学习/深度学习 数据采集 人工智能
PyTorch学习实战:AI从数学基础到模型优化全流程精解
本文系统讲解人工智能、机器学习与深度学习的层级关系,涵盖PyTorch环境配置、张量操作、数据预处理、神经网络基础及模型训练全流程,结合数学原理与代码实践,深入浅出地介绍激活函数、反向传播等核心概念,助力快速入门深度学习。
193 1
|
2月前
|
人工智能 Java API
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
本文介绍AI大模型的核心概念、分类及开发者学习路径,重点讲解如何选择与接入大模型。项目基于Spring Boot,使用阿里云灵积模型(Qwen-Plus),对比SDK、HTTP、Spring AI和LangChain4j四种接入方式,助力开发者高效构建AI应用。
1418 122
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
|
1月前
|
人工智能 搜索推荐 程序员
当AI学会“跨界思考”:多模态模型如何重塑人工智能
当AI学会“跨界思考”:多模态模型如何重塑人工智能
263 120
|
1月前
|
Java 大数据 Go
从混沌到秩序:Java共享内存模型如何通过显式约束驯服并发?
并发编程旨在混乱中建立秩序。本文对比Java共享内存模型与Golang消息传递模型,剖析显式同步与隐式因果的哲学差异,揭示happens-before等机制如何保障内存可见性与数据一致性,展现两大范式的深层分野。(238字)
66 4
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
AI Compass前沿速览:Qwen3-Max、Mixboard、Qwen3-VL、Audio2Face、Vidu Q2 AI视频生成模型、Qwen3-LiveTranslate-全模态同传大模型
AI Compass前沿速览:Qwen3-Max、Mixboard、Qwen3-VL、Audio2Face、Vidu Q2 AI视频生成模型、Qwen3-LiveTranslate-全模态同传大模型
567 13
AI Compass前沿速览:Qwen3-Max、Mixboard、Qwen3-VL、Audio2Face、Vidu Q2 AI视频生成模型、Qwen3-LiveTranslate-全模态同传大模型
|
2月前
|
人工智能 监控 Kubernetes
稳定支撑大规模模型调用,携程旅游的 AI 网关实践
为了进一步提升服务水平和服务质量,携程很早就开始在人工智能大模型领域进行探索。而随着工作的深入,大模型服务的应用领域不断扩大,公司内部需要访问大模型服务的应用也越来越多,不可避免的就遇到了几个问题,我们自然就会想到使用网关来对这些服务接入进行统一管理,并增加各种切面上的流量治理功能。
297 40
|
2月前
|
人工智能 负载均衡 API
Vercel 发布 AI Gateway 神器!可一键访问数百个模型,助力零门槛开发 AI 应用
大家好,我是Immerse,独立开发者、AGI实践者。分享编程、AI干货、开源项目与个人思考。关注公众号“沉浸式趣谈”,获取独家内容。Vercel新推出的AI Gateway,统一多模型API,支持自动切换、负载均衡与零加价调用,让AI开发更高效稳定。一行代码切换模型,告别接口烦恼!
323 1
Vercel 发布 AI Gateway 神器!可一键访问数百个模型,助力零门槛开发 AI 应用

热门文章

最新文章