Redis的数据持久化策略有哪些 ?

简介: Redis 提供了两种方式,实现数据的持久化到硬盘。1. RDB 持久化(全量),是指在指定的时间间隔内将内存中的数据集快照写入磁盘。2. AOF持久化(增量),以日志的形式记录服务器所处理的每一个写、删除操作RDB和AOF一起使用, 在Redis4.0版本支持混合持久化方式 ( 设置 aof-use-rdb-preamble yes )

Redis 提供了两种方式,实现数据的持久化到硬盘。

  1. RDB 持久化(全量),是指在指定的时间间隔内将内存中的数据集快照写入磁盘。
  2. AOF持久化(增量),以日志的形式记录服务器所处理的每一个写、删除操作
    RDB和AOF一起使用, 在Redis4.0版本支持混合持久化方式 ( 设置 aof-use-rdb-preamble yes )
目录
打赏
0
1
1
0
44
分享
相关文章
Redis分片集群中数据是怎么存储和读取的 ?
Redis集群采用的算法是哈希槽分区算法。Redis集群中有16384个哈希槽(槽的范围是 0 -16383,哈希槽),将不同的哈希槽分布在不同的Redis节点上面进行管理,也就是说每个Redis节点只负责一部分的哈希槽。在对数据进行操作的时候,集群会对使用CRC16算法对key进行计算并对16384取模(slot = CRC16(key)%16383),得到的结果就是 Key-Value 所放入的槽,通过这个值,去找到对应的槽所对应的Redis节点,然后直接到这个对应的节点上进行存取操作
Redis和Mysql如何保证数据⼀致?
1. 先更新Mysql,再更新Redis,如果更新Redis失败,可能仍然不⼀致 2. 先删除Redis缓存数据,再更新Mysql,再次查询的时候在将数据添加到缓存中 这种⽅案能解决1 ⽅案的问题,但是在⾼并发下性能较低,⽽且仍然会出现数据不⼀致的问题,⽐如线程1删除了 Redis缓存数据,正在更新Mysql,此时另外⼀个查询再查询,那么就会把Mysql中⽼数据⼜查到 Redis中 1. 使用MQ异步同步, 保证数据的最终一致性 我们项目中会根据业务情况 , 使用不同的方案来解决Redis和Mysql的一致性问题 : 1. 对于一些一致性要求不高的场景 , 不做处理例如 : 用户行为数据 ,
Redis的数据淘汰策略有哪些 ?
Redis 提供 8 种数据淘汰策略: 淘汰易失数据(具有过期时间的数据) 1. volatile-lru(least recently used):从已设置过期时间的数据集(server.db[i].expires)中挑选最近最少使用的数据淘汰 2. volatile-lfu(least frequently used):从已设置过期时间的数据集(server.db[i].expires)中挑选最不经常使用的数据淘汰 3. volatile-ttl:从已设置过期时间的数据集(server.db[i].expires)中挑选将要过期的数据淘汰 4. volatile-random:从已设置过期
Redis的数据过期策略有哪些 ?
1. 惰性删除 :只会在取出 key 的时候才对数据进行过期检查。这样对 CPU 最友好,但是可能会造成太多过期 key 没有被删除。数据到达过期时间,不做处理。等下次访问该数据时,我们需要判断 a. 如果未过期,返回数据 b. 发现已过期,删除,返回nil 2. 定期删除 : 每隔一段时间抽取一批 key 执行删除过期 key 操作。并且,Redis 底层会通过限制删除操作执行的时长和频率来减少删除操作对 CPU 时间的影响。默认情况下 Redis 定期检查的频率是每秒扫描 10 次,用于定期清除过期键。当然此值还可以通过配置文件进行设置,在 redis.conf 中修改配置“hz”
|
10月前
|
redis存储原理和数据模型
redis存储原理和数据模型
89 1
了解Redis,第一弹,什么是RedisRedis主要适用于分布式系统,用来用缓存,存储数据,在内存中存储那么为什么说是分布式呢?什么叫分布式什么是单机架构微服务架构微服务的本质
了解Redis,第一弹,什么是RedisRedis主要适用于分布式系统,用来用缓存,存储数据,在内存中存储那么为什么说是分布式呢?什么叫分布式什么是单机架构微服务架构微服务的本质
|
10月前
|
为什么要在 Redis 中存储两次同一份数据?
为什么要在 Redis 中存储两次同一份数据?
105 0
为什么要在 Redis 中存储两次同一份数据?
redis存储什么类型的数据?redis分布式锁怎么实现的?
redis存储什么类型的数据?redis分布式锁怎么实现的?
|
10月前
|
Redis源码分析-存储原理与数据模型
Redis源码分析-存储原理与数据模型
116 0
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等