植被生长与环境因素关联性研究:北部森林数据集分析

简介: 该数据集展示了1985年至2019年间,利用Landsat卫星对北半球45-70度之间北部森林生物群系植被绿度的变化趋势。通过分析生态土地单元内的样本点,提供了植被绿化的中位数变化百分比、显著变绿或变褐的样本比例等信息。数据以GeoTIFF和CSV格式存储,支持研究北部森林植被动态变化及其生态影响。

​ABoVE: Landsat Vegetation Greenness Trends, Boreal Forest Biome, 1985-2019

简介

这个数据集涵盖了1985年到2019年的时间范围内,在北部森林生物群系中,利用Landsat卫星测量的植被绿度趋势。数据集收集了关于植被覆盖变化的信息,可以帮助研究人员了解在这一时期内,北部森林地区植被的生长和变化情况。

摘要

Table 1. File names and descriptions.

File Name Units Description
boreal_greenness_median_percent_change_BBBB_CCCC.tif percent Median percent change in annual maximum vegetation greenness for time period across all sample locations within each ecological land unit. Percent change was computed as the change in vegetation greenness during the time period divided by initial vegetation greenness and then multiplied by 100.
boreal_greenness_percent_browning_BBBB_CCCC.tif percent Percent of sample locations in each ecological land unit that had a significant (α=0.10) negative trend in annual maximum vegetation greenness for the time period.
boreal_greenness_percent_greening_BBBB_CCCC.tif percent Percent of sample locations in each ecological land unit that had a significant (α=0.10) positive trend in annual maximum vegetation greenness for the time period.
boreal_sample_frame.tif 1 Binary raster identifying grid cells that were part of the boreal forest sampling frame.
boreal_ecounits.tif 1 Numerical identifier for each ecological land unit in the boreal sampling frame.
boreal_greenness_trend_summary.csv - Tabular data including trends in annual maximum vegetation greenness for sample locations during two time periods derived using an ensemble of spectral vegetation indices.
See Table 2 for variables and descriptions.

Data File Details

Each GeoTIFF has a spatial domain covering the circum-hemispheric distribution of the boreal forest biome between 45 to 70 degrees north at 300 m spatial resolution in the North Pole Lambert Azimuthal Equal Area (LAEA) spatial projection (EPSG:3571).

Table 2. Variables in the file boreal_greenness_trend_summary.csv. Each trend metric includes a best-estimate (50th percentile) as well as a lower bound (2.5th percentile) and upper bound (97.5th percentile) of a 95% confidence interval derived from Monte Carlo simulations.

Variable Units Description
site - Unique alphanumeric identifier for each sample location.
latitude degree_north Latitude in decimal degrees of site; WGS84 datum.
longitude degree_east Longitude in decimal degrees of site; WGS84 datum.
ecounit 1 Numerical identifier for the Ecological Land Unit in which each site is located.
trend.period - Time period over which the trend in vegetation greenness was assessed (“1985 to 2019” or “2000 to 2019").
tau.p025 1 Mann-Kendall’s tau statistic (2.5th percentile).
tau.p500 1 Mann-Kendall’s tau statistic (50th percentile).
tau.p975 1 Mann-Kendall’s tau statistic (97.5th percentile).
percent.change.p025 percent Percent change in vegetation greenness (2.5th percentile).
percent.change.p500 percent Percent change in vegetation greenness (50th percentile).
percent.change.p975 percent Percent change in vegetation greenness (97.5th percentile).

​编辑

代码
!pip install leafmap
!pip install pandas
!pip install folium
!pip install matplotlib
!pip install mapclassify

import pandas as pd
import leafmap

url = "https://github.com/opengeos/NASA-Earth-Data/raw/main/nasa_earth_data.tsv"
df = pd.read_csv(url, sep="\t")
df

leafmap.nasa_data_login()

results, gdf = leafmap.nasa_data_search(
short_name="ABoVE_ASCENDS_XCO2_2050",
cloud_hosted=True,
bounding_box=(-180.0, 45.0, 180.0, 72.0),
temporal=("1985-01-01", "2019-12-31"),
count=-1, # use -1 to return all datasets
return_gdf=True,
)

gdf.explore()

引用

Berner, L.T., and S.J. Goetz. 2022. ABoVE: Landsat Vegetation Greenness Trends, Boreal Forest Biome, 1985-2019. ORNL DAAC, Oak Ridge, Tennessee, USA.

网址推荐

知识星球

知识星球 | 深度连接铁杆粉丝,运营高品质社群,知识变现的工具 (zsxq.com)https://wx.zsxq.com/group/48888525452428

机器学习

https://www.cbedai.net/xg

干旱监测平台

慧天干旱监测与预警-首页https://www.htdrought.com/

相关文章
多变量(多元)多项式曲线回归线性模型分析母亲吸烟对新生婴儿体重影响可视化
多变量(多元)多项式曲线回归线性模型分析母亲吸烟对新生婴儿体重影响可视化
基于聚类和回归分析方法探究蓝莓产量影响因素与预测模型研究
k均值聚类模型多元线性回归模型随机森林模型在数据分析项目中,选择合适的模型是至关重要的。本项目中,我们采用了三种不同的模型来分析蓝莓的生长条件和产量,以确保从不同角度全面理解数据。一、K均值聚类模型K均值聚类模型是一种无监督学习方法,用于根据数据的相似性将样本分成不同的组。在这个项目中,我们使用K均值聚类模型来识别具有相似特征的蓝莓品种。通过聚类分析,我们将蓝莓分为4个类别,每个类别代表了不同的生长条件和产量特性。这种分类有助于我们理解在不同环境条件下,哪些因素对蓝莓产量有显著影响。
204 0
多变量(多元)多项式曲线回归线性模型分析母亲吸烟对新生婴儿体重影响可视化-2
多变量(多元)多项式曲线回归线性模型分析母亲吸烟对新生婴儿体重影响可视化
数据分享|R语言生态学种群空间点格局分析:聚类泊松点过程对植物、蚂蚁巢穴分布数据可视化
数据分享|R语言生态学种群空间点格局分析:聚类泊松点过程对植物、蚂蚁巢穴分布数据可视化
R语言布朗运动模拟股市、物种进化树状图、二项分布可视化
R语言布朗运动模拟股市、物种进化树状图、二项分布可视化
R语言Apriori算法关联规则对中药用药复方配伍规律药方挖掘可视化(下)
R语言Apriori算法关联规则对中药用药复方配伍规律药方挖掘可视化(下)
数据分享|多变量多元多项式曲线回归线性模型分析母亲吸烟对新生婴儿体重影响可视化
数据分享|多变量多元多项式曲线回归线性模型分析母亲吸烟对新生婴儿体重影响可视化
多变量(多元)多项式曲线回归线性模型分析母亲吸烟对新生婴儿体重影响可视化-1
多变量(多元)多项式曲线回归线性模型分析母亲吸烟对新生婴儿体重影响可视化
|
10月前
|
R语言分布滞后非线性模型(DLNM)空气污染研究温度对死亡率影响建模应用
R语言分布滞后非线性模型(DLNM)空气污染研究温度对死亡率影响建模应用