基于GA遗传算法的拱桥静载试验车辆最优布载matlab仿真

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 本程序基于遗传算法(GA)实现拱桥静载试验车辆最优布载的MATLAB仿真,旨在自动化确定车辆位置以满足加载效率要求(0.95≤ηq≤1.05),目标是使ηq尽量接近1,同时减少车辆数量和布载耗时。程序在MATLAB 2022A版本下运行,展示了工况1至工况3的测试结果。通过优化模型,综合考虑车辆重量、位置、类型及车道占用等因素,确保桥梁关键部位承受最大荷载,从而有效评估桥梁性能。核心代码实现了迭代优化过程,并输出最优布载方案及相关参数。

1.程序功能描述
基于GA遗传算法的拱桥静载试验车辆最优布载matlab仿真。主要是为了实现桥梁静载试验自动化布载(确定车辆位置使得满足加载效率ηq的要求,0.95≤ηq≤1.05),总体要求是ηq尽量靠近1,所用的加载车辆尽量少,进行布载耗时越少越好。

2.测试软件版本以及运行结果展示
MATLAB2022A版本运行

工况1:
088fd48e72ac55fc3bf909199651f8fa_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
659eae9e4cd2e25662e591e406eb93fe_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

工况参数如下:

a15a89e1b87f507e926a94f2b02d10f6_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

工况2:

7cebac14c6d5d90b0bcbe6da81c7f053_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
2c0a0eb0b4d0e9e4f77480ecd343ab15_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

工况参数如下:

2bd222c7d1f889fd6971d105c5eaed8d_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

工况3:
97531451c00a8ebc7fc7dce27f05a46f_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
fb2a13705827d6f525f75a481261ad32_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

工况参数如下:
65f5d3c9ba40a7f194bc1e75185db049_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

具体的信息参考附带的参考文献:

da862dd6e47afa5d621451a506cfbcd1_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

(完整程序运行后无水印)

3.核心程序

plot(Error,'b-o');
grid on
xlabel('迭代次数');
ylabel('适应度值');


% Xis{a} = [Xi];
% Dis{a} = [Di];
% Tis{a} = [Ti];
% Lis{a} = [Li];

[V,I]   = max(Jrs);

Xi_best = Xis{I};
Di_best = Dis{I};
Ti_best = Tis{I}; 
Li_best = Lis{I};
N;
Lr      = Lrs(I);
Ss      = Sss(I);
Minf    = V;

Times    = toc; 
%              Lrs1= [Lrs1;Lr37];
%              Lrs2= [Lrs2;Lr38];
%              Lrs3= [Lrs3;Lr39];
%              Lrs4= [Lrs4;Lr107];
%              Lrs5= [Lrs5;Lr108];
%              Lrs6= [Lrs6;Lr127];
%              Lrs7= [Lrs7;Lr128];
%              Lrs8= [Lrs8;Lr129];
%              Lrs9= [Lrs9;Lr136];
Lr37 = Lrs1(I);
Lr38 = Lrs2(I);
Lr39 = Lrs3(I);
Lr107 = Lrs4(I);
Lr108 = Lrs5(I);
Lr127 = Lrs6(I);
Lr128 = Lrs7(I);
Lr129 = Lrs8(I);
Lr136 = Lrs9(I);


%画图
func_view2(Xi_best,Di_best,Ti_best,Li_best,N,x1,x2);  
hold on


% data37  = load('dat\37.txt');
% data38  = load('dat\38.txt');
% data39  = load('dat\39.txt');
% data106 = load('dat\106.txt');
% data107 = load('dat\107.txt');
% data108 = load('dat\108.txt');
% data127 = load('dat\127.txt');
% data128 = load('dat\128.txt');
% data129 = load('dat\129.txt');
% data136 = load('dat\136.txt');

DD1 = data106;
DD2 = data38;
DD3 = data39;
DD4 = data37;
DD5 = data107;
DD6 = data108;
DD7 = data127;
DD8 = data128;
DD9 = data129;
DD10 = data136;
DD11 = data136;
DD12 = data136;
DD13 = data136;
DD14 = data136;
DD15 = data136;
DD16 = data136;
DD17 = data136;
DD18 = data136;
DD19 = data136;
DD20 = data136;

func_influence_line(DD1,DD2,DD3,DD4,DD5,DD6,DD7,DD8,DD9,DD10,DD11,DD12,DD13,DD14,DD15,DD16,DD17,DD18,DD19,DD20,NUS);


clc; 


disp('车辆布载位置:');
Xi_best

disp('车辆方向:');
Di_best

disp('车辆类型:');
Ti_best

disp('占用车道:');
Li_best

disp('最优函数值:'); 
Minf


disp('加载效应值:'); 
Ss

disp('载荷效率:'); 
Lr

disp('有效车辆:'); 
sum(Li_best)

disp('算法仿真时间:'); 
Times


[Lr,Lr37,Lr38,Lr39,Lr107,Lr108,Lr127,Lr128,Lr129,Lr136]'
AI 代码解读

4.本算法原理
基于遗传算法(Genetic Algorithm, GA)的拱桥静载试验车辆最优布载问题是一个复杂的优化问题。在这个问题中,目标是最小化车辆布置对拱桥产生的不利影响,同时确保试验能够有效检测出拱桥的承载能力和潜在问题。假设有一座拱桥,我们需要对其进行静载试验,以评估其承载能力。为了进行这项试验,我们需要确定如何将车辆放置在桥面上,以便能够模拟最不利的情况,同时又不会对桥梁造成损害。这涉及到了车辆的位置、重量分布等问题。我们的目标是找到一种车辆布载方案,使得桥梁的关键部位承受最大的荷载,从而能够有效地评估桥梁的性能。

  为了实现桥梁静载试验自动化布载(确定车辆位置使得满足加载效率ηq的要求,0.95≤ηq1.05),总体要求是ηq尽量靠近1,所用的加载车辆尽量少,进行布载耗时越少越好。
AI 代码解读

ηq=Ss/(1+μ)∙S

式中:

Ss—为静载试验荷载作用下控制截面设计内力或位移计算值;

S—为控制荷载作用下相应截面最不利内力或位移计算值;

μ—为按规范取用的冲击系数,对于平板挂车、履带车、重型车辆,取μ=0。

建立如下的优化模型:

081c9f4347b108f7b384060d4d418011_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   这个目标函数意义为,第一项,最小的车辆,第二个,是尽可能接近1。以这两个为优化目标进行优化。

   除了目标函数外,还存在一些约束条件,包括但不限于:
AI 代码解读

车辆的总重量不超过桥梁的允许载荷;
车辆之间的最小距离;
桥梁上的最大允许载荷密度等。
基于遗传算法的拱桥静载试验车辆最优布载问题是一个典型的优化问题。通过合理的选择、交叉和变异操作,遗传算法可以有效地搜索最优解。在实际应用中,还需要结合具体的桥梁模型和实际情况来进行调整和优化。

目录
打赏
0
10
10
1
211
分享
相关文章
基于生物地理算法的MLP多层感知机优化matlab仿真
本程序基于生物地理算法(BBO)优化MLP多层感知机,通过MATLAB2022A实现随机数据点的趋势预测,并输出优化收敛曲线。BBO模拟物种在地理空间上的迁移、竞争与适应过程,以优化MLP的权重和偏置参数,提升预测性能。完整程序无水印,适用于机器学习和数据预测任务。
基于MobileNet深度学习网络的活体人脸识别检测算法matlab仿真
本内容主要介绍一种基于MobileNet深度学习网络的活体人脸识别检测技术及MQAM调制类型识别方法。完整程序运行效果无水印,需使用Matlab2022a版本。核心代码包含详细中文注释与操作视频。理论概述中提到,传统人脸识别易受非活体攻击影响,而MobileNet通过轻量化的深度可分离卷积结构,在保证准确性的同时提升检测效率。活体人脸与非活体在纹理和光照上存在显著差异,MobileNet可有效提取人脸高级特征,为无线通信领域提供先进的调制类型识别方案。
基于模糊神经网络的金融序列预测算法matlab仿真
本程序为基于模糊神经网络的金融序列预测算法MATLAB仿真,适用于非线性、不确定性金融数据预测。通过MAD、RSI、KD等指标实现序列预测与收益分析,运行环境为MATLAB2022A,完整程序无水印。算法结合模糊逻辑与神经网络技术,包含输入层、模糊化层、规则层等结构,可有效处理金融市场中的复杂关系,助力投资者制定交易策略。
基于BBO生物地理优化的三维路径规划算法MATLAB仿真
本程序基于BBO生物地理优化算法,实现三维空间路径规划的MATLAB仿真(测试版本:MATLAB2022A)。通过起点与终点坐标输入,算法可生成避障最优路径,并输出优化收敛曲线。BBO算法将路径视为栖息地,利用迁移和变异操作迭代寻优。适应度函数综合路径长度与障碍物距离,确保路径最短且安全。程序运行结果完整、无水印,适用于科研与教学场景。
基于IEKF迭代扩展卡尔曼滤波算法的数据跟踪matlab仿真,对比EKF和UKF
本项目基于MATLAB2022A实现IEKF迭代扩展卡尔曼滤波算法的数据跟踪仿真,对比EKF和UKF的性能。通过仿真输出误差收敛曲线和误差协方差收敛曲线,展示三种滤波器的精度差异。核心程序包括数据处理、误差计算及可视化展示。IEKF通过多次迭代线性化过程,增强非线性处理能力;UKF避免线性化,使用sigma点直接处理非线性问题;EKF则通过一次线性化简化处理。
基于sift变换的农田杂草匹配定位算法matlab仿真
本项目基于SIFT算法实现农田杂草精准识别与定位,运行环境为Matlab2022a。完整程序无水印,提供详细中文注释及操作视频。核心步骤包括尺度空间极值检测、关键点定位、方向分配和特征描述符生成。该算法通过特征匹配实现杂草定位,适用于现代农业中的自动化防控。
基于NSGAII的的柔性作业调度优化算法MATLAB仿真,仿真输出甘特图
本程序基于NSGA-II算法实现柔性作业调度优化,适用于多目标优化场景(如最小化完工时间、延期、机器负载及能耗)。核心代码完成任务分配与甘特图绘制,支持MATLAB 2022A运行。算法通过初始化种群、遗传操作和选择策略迭代优化调度方案,最终输出包含完工时间、延期、机器负载和能耗等关键指标的可视化结果,为制造业生产计划提供科学依据。
基于入侵野草算法的KNN分类优化matlab仿真
本程序基于入侵野草算法(IWO)优化KNN分类器,通过模拟自然界中野草的扩散与竞争过程,寻找最优特征组合和超参数。核心步骤包括初始化、繁殖、变异和选择,以提升KNN分类效果。程序在MATLAB2022A上运行,展示了优化后的分类性能。该方法适用于高维数据和复杂分类任务,显著提高了分类准确性。
基于WOA鲸鱼优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本内容介绍了一种基于CNN-LSTM-SAM网络与鲸鱼优化算法(WOA)的时间序列预测方法。算法运行于Matlab2022a,完整程序无水印并附带中文注释及操作视频。核心流程包括数据归一化、种群初始化、适应度计算及参数更新,最终输出最优网络参数完成预测。CNN层提取局部特征,LSTM层捕捉长期依赖关系,自注意力机制聚焦全局特性,全连接层整合特征输出结果,适用于复杂非线性时间序列预测任务。
基于yolov2和googlenet网络的疲劳驾驶检测算法matlab仿真
本内容展示了基于深度学习的疲劳驾驶检测算法,包括算法运行效果预览(无水印)、Matlab 2022a 软件版本说明、部分核心程序(完整版含中文注释与操作视频)。理论部分详细阐述了疲劳检测原理,通过对比疲劳与正常状态下的特征差异,结合深度学习模型提取驾驶员面部特征变化。具体流程包括数据收集、预处理、模型训练与评估,使用数学公式描述损失函数和推理过程。课题基于 YOLOv2 和 GoogleNet,先用 YOLOv2 定位驾驶员面部区域,再由 GoogleNet 分析特征判断疲劳状态,提供高准确率与鲁棒性的检测方法。