基于MobileNet深度学习网络的MQAM调制类型识别matlab仿真

简介: 本项目基于Matlab2022a实现MQAM调制类型识别,使用MobileNet深度学习网络。完整程序运行效果无水印,核心代码含详细中文注释和操作视频。MQAM调制在无线通信中至关重要,MobileNet以其轻量化、高效性适合资源受限环境。通过数据预处理、网络训练与优化,确保高识别准确率并降低计算复杂度,为频谱监测、信号解调等提供支持。

1.算法运行效果图预览
(完整程序运行后无水印)
1.jpeg
2.jpeg
3.jpeg
4.jpeg

2.算法运行软件版本
matlab2022a

3.部分核心程序
(完整版代码包含详细中文注释和操作步骤视频)

```% 创建一个训练选项结构体opts,用于配置网络训练的各种参数:
% "adam"表示使用Adam优化器进行训练;
% "ExecutionEnvironment","auto"表示自动选择执行环境(如GPU或CPU);
% "GradientThresholdMethod","global-l2norm"指定梯度阈值的计算方法为全局L2范数;
% "InitialLearnRate",0.001设置初始学习率为0.001;
% "MiniBatchSize",32表示每个小批次的样本数量为32;
% "MaxEpochs",20设置最大训练轮数为20;
% "Shuffle","every-epoch"表示每一轮训练前都对数据进行打乱;
% "Plots","training-progress"表示在训练过程中绘制训练进度相关的图表;
% "ValidationData",augimdsValidation指定验证数据为augimdsValidation
opts = trainingOptions("adam",...
"ExecutionEnvironment","auto",...
"GradientThresholdMethod","global-l2norm",...
"InitialLearnRate",0.001,...
"MiniBatchSize",32,...
"MaxEpochs",20, ...
"Shuffle","every-epoch",...
"Plots","training-progress",...
"ValidationData",augimdsValidation);

% 创建一个空的层图对象lgraph,后续将在这个层图上添加各种神经网络层来构建完整的网络结构
lgraph = func_mobileNet_layer(classs);

figure
plot(lgraph)
% Train Network
[net, traininfo] = trainNetwork(augimdsTrain,lgraph,opts);

save Net.mat net traininfo

```

4.算法理论概述
在现代无线通信系统中,信号调制类型的识别对于频谱监测、信号解调、干扰识别等任务具有至关重要的意义。MQAM 作为一种广泛应用的高效调制方式,能够在有限的带宽内传输更多的信息。随着深度学习技术的飞速发展,其在信号处理领域的应用日益广泛。MobileNet 深度学习网络以其轻量化、高效性的特点,特别适合于资源受限环境下的信号识别任务。基于 MobileNet 网络实现 MQAM 调制类型识别,能够在保证较高识别准确率的同时,降低计算复杂度和资源消耗,为无线通信系统的智能化发展提供有力支持。

4.1 MQAM调制原理

image.png

4.2 MobileNet 网络架构
MobileNet 网络主要采用深度可分离卷积(Depthwise Separable Convolution)来构建轻量化的网络结构。其网络架构通常由多个卷积层、深度可分离卷积层、池化层、全连接层以及激活函数层组成。其结构如下图所示:

image.png

   基于MobileNet深度学习网络的MQAM调制类型识别方法利用了 MobileNet 网络的轻量化和高效性特点,结合 MQAM 调制的数学原理与信号特征,通过数据预处理、网络训练与优化等一系列步骤。通过深入分析 MQAM 调制的数学模型、MobileNet 网络的架构与计算原理,以及识别过程中的数据处理、参数更新等机制,并采用性能分析指标评估网络性能、运用优化策略提升网络效果,为无线通信领域中的调制类型识别提供了一种先进的技术方案。
AI 代码解读
目录
打赏
0
24
29
2
229
分享
相关文章
机器人路径规划和避障算法matlab仿真,分别对比贪婪搜索,最安全距离,RPM以及RRT四种算法
本程序基于MATLAB 2022A实现机器人路径规划与避障仿真,对比贪婪搜索、最安全距离、RPM和RRT四种算法。通过地图模拟环境,输出各算法的路径规划结果,展示其在避障性能与路径优化方面的差异。代码包含核心路径搜索逻辑,并附有测试运行图示,适用于机器人路径规划研究与教学演示。
117 64
基于Qlearning强化学习的1DoF机械臂运动控制系统matlab仿真
本项目基于Q-learning强化学习算法,实现对单自由度机械臂的运动控制仿真。通过MATLAB 2022a平台验证算法效果,包含完整代码与仿真图像,具备良好可视化效果,适用于机器人控制与强化学习研究入门。
51 8
|
11月前
|
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
439 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
268 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
427 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等