AIMv2:苹果开源多模态视觉模型,自回归预训练革新图像理解

本文涉及的产品
图像搜索,任选一个服务类型 1个月
简介: AIMv2 是苹果公司开源的多模态自回归预训练视觉模型,通过图像和文本的深度融合提升视觉模型的性能,适用于多种视觉和多模态任务。

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!

🥦 AI 在线答疑 -> 智能检索历史文章和开源项目 -> 尽在微信公众号 -> 搜一搜:蚝油菜花 🥦


🎧 “视觉与文本的完美融合!苹果开源AIMv2:多模态自回归预训练模型,性能超越CLIP和DINOv2!”

大家好,我是蚝油菜花。你是否也遇到过——

  • 👉 图像识别任务中,模型对复杂场景的理解能力不足?
  • 👉 多模态任务中,图像和文本的结合效果不理想?
  • 👉 需要处理大量图像和文本数据,但训练过程复杂且耗时?

今天揭秘的 AIMv2,是苹果公司开源的多模态自回归预训练视觉模型,通过创新的预训练框架,将图像和文本深度融合,显著提升了模型在视觉和多模态任务中的表现。AIMv2 不仅简化了训练过程,还支持多种参数规模的版本,适用于从手机到PC等不同设备。接下来,我们将深入探讨 AIMv2 的核心功能和技术原理,带你全面了解这款强大的视觉模型!

🚀 快速阅读

AIMv2 是苹果公司开源的多模态自回归预训练视觉模型,通过图像和文本的深度融合提升视觉模型的性能。

  1. 核心功能:支持视觉问答、指代表达理解、图像字幕生成、多媒体检索等任务。
  2. 技术原理:采用多模态自回归预训练框架,结合视觉编码器和多模态解码器,实现图像和文本的高效融合。

AIMv2 是什么

ml-aim

AIMv2 是苹果公司开源的多模态自回归预训练视觉模型,通过图像和文本的深度融合提升视觉模型的性能。该模型采用创新的预训练框架,将图像划分为非重叠的图像块,将文本分解为子词令牌,然后将两者拼接为统一序列进行自回归预训练。这种设计简化了训练过程,增强了模型对多模态数据的理解能力。

AIMv2 提供了多种参数规模的版本(如300M、600M、1.2B和2.7B),适用于从手机到PC等不同设备。在性能方面,AIMv2 在多模态任务和传统视觉任务中均表现出色,尤其在视觉问答、指代表达理解和图像字幕生成等任务中展现了强大的能力。

AIMv2 的主要功能

  • 视觉问答(VQA):AIMv2 提取视觉特征并与问题文本结合,传递给大型语言模型(LLM),生成准确且贴合上下文的答案。
  • 指代表达理解:在 RefCOCO 和 RefCOCO+ 等基准测试中,AIMv2 能精准地将自然语言描述与视觉区域对应起来。
  • 图像字幕生成:结合 LLM,AIMv2 可以生成高质量的图像描述。
  • 多媒体检索:AIMv2 的多模态表示能力能高效地处理多媒体检索任务,支持对图像和文本的联合检索。
  • 与大型语言模型(LLM)集成:AIMv2 的架构与 LLM 驱动的多模态应用高度契合,能无缝集成到各种多模态系统中。
  • 零样本适应性:AIMv2 支持零样本识别适应性,能在不进行额外训练的情况下适应新的视觉任务。

AIMv2 的技术原理

  • 多模态自回归预训练框架:AIMv2 将图像分割为不重叠的小块(Patch),将文本分解为子词标记,然后将两者拼接为一个多模态序列。在预训练阶段,模型通过自回归的方式预测序列中的下一个元素,图像块还是文本标记。这种设计使得模型能够同时学习视觉和语言模态之间的关联。
  • 视觉编码器与多模态解码器:AIMv2 的架构由视觉编码器和多模态解码器组成。视觉编码器基于视觉 Transformer(ViT)架构,负责处理图像 Patch。多模态解码器则使用因果自注意力机制,根据前文内容预测下一个元素。
  • 损失函数设计:AIMv2 定义了图像和文本领域的单独损失函数。文本损失采用标准的交叉熵损失,图像损失则采用像素级回归损失,用于比较预测的图像块与真实图像块。整体目标是最小化文本损失和图像损失的加权和,以平衡模型在两个模态上的性能。
  • 训练数据与扩展性:AIMv2 使用了大量图像和文本配对数据集进行预训练,包括公开的 DFN-2B 和 COYO 数据集。训练过程简单高效,不需要过大的批量大小或特殊的跨批次通信方法。AIMv2 的性能随着数据量和模型规模的增加而提升,展现出良好的可扩展性。
  • 预训练后的优化策略:AIMv2 探索了多种训练后策略,例如高分辨率适配和原始分辨率微调。这些策略使得模型能够更好地处理不同分辨率和宽高比的图像,进一步提升其在下游任务中的表现。

如何运行 AIMv2

安装

请使用官方安装说明安装 PyTorch。之后,安装 AIMv2 包:

pip install 'git+https://github.com/apple/ml-aim.git#subdirectory=aim-v1'
pip install 'git+https://github.com/apple/ml-aim.git#subdirectory=aim-v2'

我们还支持MLX后端,用于在 Apple 芯片上进行研究和实验。要启用 MLX 支持,只需运行:

pip install mlx

使用 PyTorch

from PIL import Image
from aim.v2.utils import load_pretrained
from aim.v1.torch.data import val_transforms

img = Image.open(...)
model = load_pretrained("aimv2-large-patch14-336", backend="torch")
transform = val_transforms(img_size=336)

inp = transform(img).unsqueeze(0)
features = model(inp)

使用 MLX

from PIL import Image
import mlx.core as mx
from aim.v2.utils import load_pretrained
from aim.v1.torch.data import val_transforms

img = Image.open(...)
model = load_pretrained("aimv2-large-patch14-336", backend="mlx")
transform = val_transforms(img_size=336)

inp = transform(img).unsqueeze(0)
inp = mx.array(inp.numpy())
features = model(inp)

使用 JAX

from PIL import Image
import jax.numpy as jnp
from aim.v2.utils import load_pretrained
from aim.v1.torch.data import val_transforms

img = Image.open(...)
model, params = load_pretrained("aimv2-large-patch14-336", backend="jax")
transform = val_transforms(img_size=336)

inp = transform(img).unsqueeze(0)
inp = jnp.array(inp)
features = model.apply({
   "params": params}, inp)

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!

🥦 AI 在线答疑 -> 智能检索历史文章和开源项目 -> 尽在微信公众号 -> 搜一搜:蚝油菜花 🥦

相关文章
|
2月前
|
分布式计算 测试技术 Spark
科大讯飞开源星火化学大模型、文生音效模型
近期,科大讯飞在魔搭社区(ModelScope)和Gitcode上开源两款模型:讯飞星火化学大模型Spark Chemistry-X1-13B、讯飞文生音频模型AudioFly,助力前沿化学技术研究,以及声音生成技术和应用的探索。
270 2
|
2月前
|
人工智能 Java API
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
本文介绍AI大模型的核心概念、分类及开发者学习路径,重点讲解如何选择与接入大模型。项目基于Spring Boot,使用阿里云灵积模型(Qwen-Plus),对比SDK、HTTP、Spring AI和LangChain4j四种接入方式,助力开发者高效构建AI应用。
1418 122
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
|
1月前
|
人工智能 搜索推荐 程序员
当AI学会“跨界思考”:多模态模型如何重塑人工智能
当AI学会“跨界思考”:多模态模型如何重塑人工智能
263 120
|
2月前
|
自然语言处理 机器人 图形学
腾讯混元图像3.0正式开源发布!80B,首个工业级原生多模态生图模型
腾讯混元图像3.0,真的来了——开源,免费开放使用。 正式介绍一下:混元图像3.0(HunyuanImage 3.0),是首个工业级原生多模态生图模型,参数规模80B,也是目前测评效果最好、参数量最大的开源生图模型,效果可对…
757 2
腾讯混元图像3.0正式开源发布!80B,首个工业级原生多模态生图模型
|
1月前
|
缓存 物联网 PyTorch
使用TensorRT LLM构建和运行Qwen模型
本文档介绍如何在单GPU和单节点多GPU上使用TensorRT LLM构建和运行Qwen模型,涵盖模型转换、引擎构建、量化推理及LoRA微调等操作,并提供详细的代码示例与支持矩阵。
430 2
|
1月前
|
存储 机器学习/深度学习 人工智能
54_模型优化:大模型的压缩与量化
随着大型语言模型(LLM)的快速发展,模型规模呈指数级增长,从最初的数亿参数到如今的数千亿甚至万亿参数。这种规模扩张带来了惊人的能源消耗和训练成本,同时也给部署和推理带来了巨大挑战。2025年,大模型的"瘦身"已成为行业发展的必然趋势。本文将深入剖析大模型压缩与量化的核心技术、最新进展及工程实践,探讨如何通过创新技术让大模型在保持高性能的同时实现轻量化部署,为企业和开发者提供全面的技术指导。
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
53_多模态LLM:图像理解的新范式
在人工智能技术快速发展的今天,单一模态的语言模型已经无法满足日益复杂的应用需求。2025年,多模态大型语言模型(MLLM)的崛起标志着AI技术进入了一个新的发展阶段,特别是在图像理解与文本生成的结合方面取得了突破性进展。本文将深入剖析多模态LLM的技术原理、架构设计、性能评估及实际应用案例,探讨视觉-语言融合技术如何重塑AI应用的边界,以及在未来发展中面临的挑战与机遇。
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
38_多模态模型:CLIP的视觉-语言对齐_深度解析
想象一下,当你看到一张小狗在草地上奔跑的图片时,你的大脑立刻就能将视觉信息与"小狗"、"草地"、"奔跑"等概念联系起来。这种跨模态的理解能力对于人类来说似乎是理所当然的,但对于人工智能系统而言,实现这种能力却经历了长期的技术挑战。多模态学习的出现,标志着AI从单一模态处理向更接近人类认知方式的综合信息处理迈出了关键一步。

热门文章

最新文章