OpenSearch LLM智能问答版全新升级

本文涉及的产品
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
OpenSearch LLM智能问答版免费试用套餐,存储1GB首月+计算资源100CU
简介: OpenSearch LLM智能问答版全新升级

阿里云OpenSearch LLM智能问答版是OpenSearch推出的一站式开箱即用的检索增强生成(RAG)云产品,帮助开发者快速构建多模态对话式搜索服务。


自2023年6月上线以来,OpenSearch   LLM智能问答版已累计支持了数百家云上客户搭建RAG系统,适用于商品导购、智能客服、企业知识库等众多典型应用场景。随着AI技术日新月异的发展,OpenSearch也在进行能力升级,持续打造更优质的RAG云产品。


本文将重点介绍OpenSearch近期带来的全新升级。



内置最新开源大模型


OpenSearch LLM智能问答版新增支持最新版开源大模型。相比于去年同期发布的模型,新一代大模型的训练数据量扩展了7倍,包含的代码数量扩展了4倍,其在标准测试集上的效果也超过了众多知名模型,被称为“目前市场上最好的开源大模型”。


在RAG场景下,最新版大模型的表现同样优异。在相似的模型参数规模下,最新版大模型生成结果的冗余性大幅降低,总结能力明显提升,同时在英文场景下的表现更加出色。


第二代大模型生成结果

image.png


第三代大模型生成结果


image.png



目前,OpenSearch LLM智能问答版已全量开放最新版大模型测试,欢迎感兴趣的客户对比测试。


中文语义理解能力登顶C-MTEB榜单


语义理解是搜索的基础,也是影响RAG系统准确性的重要环节。


OpenSearch基于自主研发的稠密+稀疏混合向量模型,构建更精准的语义理解能力,目前已登顶中文向量模型C-MTEB榜单,超过众多知名国内外厂商和开源模型。


image.png


特别是在召回率指标上,OpenSearch的优势更加明显。更高的召回率保证了对话大模型能获取更充足的语料输入,从而生成更优质的答案。



多模态模型助力新一代图片理解


在电商导购、智能客服、企业知识库等场景中,大量关键信息以图片的形式呈现,图文结合的多模态展现可以大幅提升用户体验和结果准确率。


OpenSearch结合Qwen-VL-Max多模态大模型,实现了全新一代图片内容理解,打造多模态RAG系统。

其中,图片结合能力包含:

  • 图片内容理解:使用Qwen-VL-Max模型,理解文档中的图片信息,并作为文档知识参与知识库对话问答。

示例:

image.png

问题:伞是什么颜色的

回答:伞是红色的。在已知信息中提到:“这种图片展示了一个场景,其中一个人站在一个红色的雨伞下。”因此,可以确定伞的颜色是红色。

  • 文字信息OCR:识别图片中的文字信息,并作为格式化文本存储到知识库中。

示例:

image.png

问题:哲学书的名字是什么

回答:哲学书的名字是“苏格拉底的申辩”。

  • 上下文信息扩展联想:结合图片上下文的文本信息,作为图片内容的辅助描述,增强图片的理解能力。
  • 多参考图片返回:升级后的OpenSearch LLM智能问答版支持多种图片作为问答结果的参考图片,适用于操作流程图、商品信息展示等多个场景。


切片策略升级,搜索能力大幅提升


在常见的RAG框架中,知识库中的长文本文档会首先进行切片,然后进行后续的向量化以及索引构建等处理。


最新版OpenSearch LLM智能问答版支持语义切片、单句切片等多种切片策略。结合使用两种切片策略后,OpenSearch在典型场景上的准确率、召回率得到大幅提升。


切片方式

回答准确率

搜索召回率

语义切片

85%

88%

语义切片+单句切片

90%

95%


结合OpenSearch底层高性能引擎Havenask,即使单句切片产生了大量的扩展文本和向量索引,系统也可毫秒级返回最相关的文档段落,从而保障RAG系统整体的性能和效果。



未来规划


未来,OpenSearch将结合大语言模型、自然语言处理技术,持续探索智能搜索技术,并将于近期推出搜索开发工作台,支持在智能搜索、RAG场景下更灵活使用,敬请期待。

相关实践学习
以电商场景为例搭建AI语义搜索应用
本实验旨在通过阿里云Elasticsearch结合阿里云搜索开发工作台AI模型服务,构建一个高效、精准的语义搜索系统,模拟电商场景,深入理解AI搜索技术原理并掌握其实现过程。
相关文章
|
机器学习/深度学习 数据采集 人工智能
大模型升级与设计之道:ChatGLM、LLAMA、Baichuan及LLM结构解析(上)
大模型升级与设计之道:ChatGLM、LLAMA、Baichuan及LLM结构解析(上)
1371 0
|
9月前
|
存储 人工智能 测试技术
跨模态大升级!少量数据高效微调,LLM教会CLIP玩转复杂文本
LLM2CLIP是一种创新方法,旨在通过利用大型语言模型(LLM)的能力来改进CLIP多模态模型。该方法通过对比学习微调LLM,增强其文本判别性,并将其作为CLIP的强教师,从而显著提升CLIP处理长复杂文本和跨语言任务的能力。实验表明,LLM2CLIP在多个基准测试中优于现有模型,特别是在长文本检索任务上性能提升了16.5%。尽管如此,该方法在实际应用中的鲁棒性和资源需求仍需进一步验证。论文链接:https://arxiv.org/pdf/2411.04997。
362 70
|
9月前
|
人工智能 自然语言处理 搜索推荐
高性价比| OpenSearch 智能问答版开箱即用 DeepSeek-R1
OpenSearch LLM智能问答版基于DeepSeek-R1一分钟搭建RAG系统。
1596 11
高性价比| OpenSearch 智能问答版开箱即用 DeepSeek-R1
|
存储 人工智能 自然语言处理
OpenSearch LLM智能问答版全新升级
阿里云OpenSearch LLM智能问答版近期全新升级,新增最新版开源大模型、多模态模型、切片策略升级等产品能力。
2314 2
|
并行计算 算法 Shell
LLM-01 大模型 本地部署运行 ChatGLM2-6B-INT4(6GB) 简单上手 环境配置 单机单卡多卡 2070Super8GBx2 打怪升级!
LLM-01 大模型 本地部署运行 ChatGLM2-6B-INT4(6GB) 简单上手 环境配置 单机单卡多卡 2070Super8GBx2 打怪升级!
251 1
|
7月前
|
机器学习/深度学习 存储 缓存
加速LLM大模型推理,KV缓存技术详解与PyTorch实现
大型语言模型(LLM)的推理效率是AI领域的重要挑战。本文聚焦KV缓存技术,通过存储复用注意力机制中的Key和Value张量,减少冗余计算,显著提升推理效率。文章从理论到实践,详细解析KV缓存原理、实现与性能优势,并提供PyTorch代码示例。实验表明,该技术在长序列生成中可将推理时间降低近60%,为大模型优化提供了有效方案。
1388 15
加速LLM大模型推理,KV缓存技术详解与PyTorch实现
|
4月前
|
弹性计算 关系型数据库 API
自建Dify平台与PAI EAS LLM大模型
本文介绍了如何使用阿里云计算巢(ECS)一键部署Dify,并在PAI EAS上搭建LLM、Embedding及重排序模型,实现知识库支持的RAG应用。内容涵盖Dify初始化、PAI模型部署、API配置及RAG知识检索设置。
自建Dify平台与PAI EAS LLM大模型
|
1月前
|
监控 安全 Docker
10_大模型开发环境:从零搭建你的LLM应用平台
在2025年,大语言模型(LLM)已经成为AI应用开发的核心基础设施。无论是企业级应用、科研项目还是个人创新,拥有一个高效、稳定、可扩展的LLM开发环境都至关重要。
|
1月前
|
人工智能 监控 安全
06_LLM安全与伦理:部署大模型的防护指南
随着大型语言模型(LLM)在各行业的广泛应用,其安全风险和伦理问题日益凸显。2025年,全球LLM市场规模已超过6400亿美元,年复合增长率达30.4%,但与之相伴的是安全威胁的复杂化和伦理挑战的多元化
|
2月前
|
存储 缓存 负载均衡
LLM推理成本直降60%:PD分离在大模型商业化中的关键价值
在LLM推理中,Prefill(计算密集)与Decode(访存密集)阶段特性不同,分离计算可提升资源利用率。本文详解vLLM框架中的PD分离实现及局限,并分析Dynamo、Mooncake、SGLang等主流方案,探讨KV缓存、传输机制与调度策略,助力LLM推理优化。建议点赞收藏,便于后续查阅。
1419 1
下一篇
oss云网关配置