基于GA遗传优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真

本文涉及的产品
全球加速 GA,每月750个小时 15CU
简介: 本项目使用MATLAB 2022a实现时间序列预测算法,完整程序无水印。核心代码包含详细中文注释和操作视频。算法基于CNN-LSTM-SAM网络,融合卷积层、LSTM层与自注意力机制,适用于金融市场、气象预报等领域。通过数据归一化、种群初始化、适应度计算及参数优化等步骤,有效处理非线性时间序列,输出精准预测结果。

1.算法运行效果图预览
(完整程序运行后无水印)

1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg
6.jpeg
7.jpeg

2.算法运行软件版本
matlab2022a

3.部分核心程序
(完整版代码包含详细中文注释和操作步骤视频)

```[V,I] = min(JJ);
g1 = phen1(I,:);

LR = g1(1);
NN1 = floor(g1(2))+1;

if g1(3)<1/3 x1=4; end if g1(3)>=1/3 & g1(3)<2/3 x1=5; end if g1(3)>=2/3
x1=6;
end

if g1(4)<1/3 x2=3; end if g1(4)>=1/3 & g1(4)<2/3 x2=5; end if g1(4)>=2/3
x2=7;
end

CNN_GRN_SAM = func_model2(Nfactor,NN1,x1,x2);

%设置
%迭代次数
%学习率为0.001
opt = trainingOptions('adam', ...
'MaxEpochs', 20, ...
'InitialLearnRate', LR, ...
'LearnRateSchedule', 'piecewise', ...
'LearnRateDropFactor', 0.075, ...
'LearnRateDropPeriod', 200, ...
'Shuffle', 'every-epoch', ...
'Plots', 'training-progress', ...
'Verbose', false);

%训练
[net,INFO] = trainNetwork(Ptrain_reshape, t_train, CNN_GRN_SAM, opt);
Rerr = INFO.TrainingRMSE;
Rlos = INFO.TrainingLoss;
figure
subplot(211)
plot(Rerr)
xlabel('迭代次数')
ylabel('RMSE')
grid on

subplot(212)
plot(Rlos)
xlabel('迭代次数')
ylabel('LOSS')
grid on
%数据预测

tmps = predict(net, Ptest_reshape );
T_pred = mapminmax('reverse', tmps', vmax2);

figure
plot(T_test, 'r')
hold on
plot(T_pred, 'b-x')
legend('真实值', '预测值')
grid on
%%试集结果
figure
plotregression(T_test,T_pred,['回归']);
ERR=mean(abs(T_test-T_pred));
ERR
save R2.mat Rerr Rlos T_test T_pred ERR Error2

```

4.算法理论概述
时间序列预测在众多领域中都具有重要的应用价值,如金融市场预测、气象预报、交通流量预测等。传统的时间序列预测方法在处理复杂的非线性时间序列数据时往往表现出一定的局限性。近年来,深度学习技术的发展为时间序列预测提供了新的思路和方法。

网络结构

CNN-lstm-SAM 网络由卷积层、lstm层、自注意力机制层和全连接层组成。

   卷积层用于提取时间序列数据的局部特征;lstm层用于处理时间序列数据中的长期依赖关系;自注意力机制层用于捕捉时间序列数据中的全局特征;全连接层将提取到的特征进行整合,输出预测结果。 LSTM是RNN的一种变体,特别擅长处理长序列依赖问题。它通过门控机制控制信息的遗忘、更新和输出,有效缓解了梯度消失/爆炸问题。

算法流程

1.数据预处理:对时间序列数据进行归一化处理,使其取值范围在([0,1])之间。

2.初始化种群:随机生成一组种群,每个个体代表一组网络参数。

3.计算适应度值:对于每个个体,将其对应的网络参数代入 CNN-lstm-SAM 网络中,对训练数据进行预测,并计算预测结果与真实值之间的误差,作为该个体的适应度值。

4.更新个体信息,完成选择,交叉,变异三个步骤:并根据新的个体的信息更新公式,更新粒子的信息。

5.重复步骤 3 和 4,直到满足停止条件(如达到最大迭代次数或适应度值小于某个阈值)。6.输出最优网络参数:将全局最优位置对应的网络参数作为最优网络参数,代入 CNN-lstm-SAM 网络中,对测试数据进行预测,得到最终的预测结果。

相关文章
|
1月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
190 0
|
2月前
|
传感器 机器学习/深度学习 编解码
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
195 3
|
1月前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
137 8
|
1月前
|
机器学习/深度学习 算法 自动驾驶
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
146 8
|
1月前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。
|
1月前
|
开发框架 算法 .NET
基于ADMM无穷范数检测算法的MIMO通信系统信号检测MATLAB仿真,对比ML,MMSE,ZF以及LAMA
简介:本文介绍基于ADMM的MIMO信号检测算法,结合无穷范数优化与交替方向乘子法,降低计算复杂度并提升检测性能。涵盖MATLAB 2024b实现效果图、核心代码及详细注释,并对比ML、MMSE、ZF、OCD_MMSE与LAMA等算法。重点分析LAMA基于消息传递的低复杂度优势,适用于大规模MIMO系统,为通信系统检测提供理论支持与实践方案。(238字)
|
2月前
|
机器学习/深度学习 传感器 算法
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
196 2
|
1月前
|
机器学习/深度学习 数据采集 负载均衡
结合多种启发式解码方法的混合多目标进化算法,用于解决带工人约束的混合流水车间调度问题(Matlab代码实现)
结合多种启发式解码方法的混合多目标进化算法,用于解决带工人约束的混合流水车间调度问题(Matlab代码实现)
122 0
|
1月前
|
机器学习/深度学习 人工智能 算法
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
112 0
|
2月前
|
机器学习/深度学习 存储 算法
【微电网调度】考虑需求响应的基于改进多目标灰狼算法的微电网优化调度研究(Matlab代码实现)
【微电网调度】考虑需求响应的基于改进多目标灰狼算法的微电网优化调度研究(Matlab代码实现)
148 0

热门文章

最新文章

下一篇
oss云网关配置