Java也能快速搭建AI应用?一文带你玩转Spring AI可落地性

本文涉及的产品
任务调度 XXL-JOB 版免费试用,400 元额度,开发版规格
云原生网关 MSE Higress,422元/月
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
简介: Java语言凭借其成熟的生态与解决方案,特别是通过 Spring AI 框架,正迅速成为 AI 应用开发的新选择。本文将探讨如何利用 Spring AI Alibaba 构建在线聊天 AI 应用,并实现对其性能的全面可观测性。

作者: 希铭


概述


随着LLM(大语言模型)基础技术的不断成熟和应用领域的广泛挖掘,越来越多的企业和开发者开始将LLM技术集成到自己的互联网服务架构中,市场上支撑培育了一款基于LLM技术搭建的爆款应用。Python受益于其丰富的框架和社区生态,成为了队列开发者构建这些AI应用的首选。应用架构急需成熟,吞吐量、访问性能、可扩展性、微服务生态等重要指标也成为大规模开发者和运维人员关注的焦点。正好,经历了互联网考验时代的Java语言在这些方面已经有了很成熟的解决方案和生态。那么,使用Java语言能否也像Python一样搭建出来AI应用呢?


作为炙手可热的Java应用开发框架,Spring给出了解决方案——Spring AI [1]Spring AI旨在简化Java AI应用程序开发,让Java开发者像使用Spring开发普通应用一样开发AI应用。以Spring AI为基础,Spring AI阿里巴巴项目 [2] 引入了阿里云通义系列大模型的全面装备,带来了丰富的工具集和深度的云服务集成,让开发者极速搭建即可实现AI应用。


在生成式AI应用中,可移植性也是一个非常重要的能力,它不仅可以解决应用本身的性能调优、错误追踪等常见问题,还能成为解决AI应用中成本控制、模型偏见、模型幻觉等问题的利器。Spring AI阿里巴巴在Spring AI可移植性基础上进行了扩展,对通义系列大模型及阿里云工具集的可移植性进一步扩展,提供了更多细节的可移植能力。另外,阿里云应用实时监控服务(ARMS)全面集成了Spring AI可落地性数据的支持,用户只需修改业务代码,只需适当调整启动配置,就能获得企业级可落地服务。


本文将基于阿里巴巴 Spring AI,借由通义千问提供的模型服务搭建一个简单的在线聊天 AI 应用,并借助 ARMS 完成对 AI 应用中调用过程的追踪和用量部署。


快速搭建 Spring AI 应用


本示范节如何基于Spring AI阿里巴巴开发一个在线聊天代理应用,并支持大模型调用本地函数来查询某城市某天的天气,可以在查看此处示例源码 [3]


1. 新建一个项目,在项目的 pom.xml 中引入 spring-ai-alibaba-starter 依赖:


<dependency>
  <groupId>com.alibaba.cloud.ai</groupId>
  <artifactId>spring-ai-alibaba-starter</artifactId>
  <version>1.0.0-M3.2</version>
</dependency>


2.修改application.yml,添加dashscope的api key,下面${AI_DASHSCOPE_API_KEY}替换为您通义大模型的API Key,获取方式参见[4]:


spring:
  application:
    name: chatmodel-example

  ai:
    dashscope:
      api-key: ${AI_DASHSCOPE_API_KEY}


3.编写聊天服务控制器类,/weather-service根据客户的提示词天气查询:


@RestController
@RequestMapping("/ai/func")
public class FunctionCallingController {

  private final ChatClient chatClient;

  public FunctionCallingController(ChatClient.Builder chatClientBuilder) {
    this.chatClient = chatClientBuilder.build();
  }

  @GetMapping("/weather-service")
  public String weatherService(String subject) {
    return chatClient.prompt()
      .function("getWeather", "根据城市查询天气", new MockWeatherService())
      .user(subject)
      .call()
      .content();
  }
}


4.编写函数供大模型调用:


public class MockWeatherService implements Function<MockWeatherService.Request, Response> {
  @Override
  public Response apply(Request request) {
    if (request.city().contains("杭州")) {
      return new Response(String.format("%s%s晴转多云, 气温32摄氏度。", request.date(), request.city()));
    }
    else if (request.city().contains("上海")) {
      return new Response(String.format("%s%s多云转阴, 气温31摄氏度。", request.date(), request.city()));
    }
    else {
      return new Response(String.format("暂时无法查询%s的天气状况。", request.city()));
    }
  }

  @JsonInclude(JsonInclude.Include.NON_NULL)
  @JsonClassDescription("根据日期和城市查询天气")
  public record Request(
      @JsonProperty(required = true, value = "city") @JsonPropertyDescription("城市, 比如杭州") String city,
      @JsonProperty(required = true, value = "date") @JsonPropertyDescription("日期, 比如2024-08-22") String date) {
  }
}


5.编写Spring Boot启动类:


@SpringBootApplication
public class FunctionCallingExampleApplication {
  public static void main(String[] args) {
    SpringApplication.run(FunctionCallingExampleApplication.class, args);
  }
}


部署应用


通过以上五步,我们的AI Agent应用已经可以正常部署,要集成可安装性把数据上报到ARMS,还需要做少量的工作。


1.修改application.yml文件,开启可设置相关数据的开关,实际生产中可以接开启:


spring:
  ai:
    chat:
      client:
        observations:
          # 记录调用者输入的内容
          include-input: true
      observations:
          # 记录大模型输出
          include-completion: true
          # 记录大模型提示词
          include-prompt: true


2.修改pom.xml文件,引入可安装性相关依赖:


<dependency>
  <!-- spring 提供的可观测工具包,用于初始化 micrometer 组件 -->
  <groupId>org.springframework.boot</groupId>
  <artifactId>spring-boot-starter-actuator</artifactId>
</dependency>

<dependency>
  <!-- micrometer-opentelemetry 桥接器,用于将 micrometer 链路追踪代理到 opentelemetry -->
  <groupId>io.micrometer</groupId>
  <artifactId>micrometer-tracing-bridge-otel</artifactId>
</dependency>


3. 在 Spring Boot 启动类中调整 OpenTelemetrySdk 获取方式,改为直接从 GlobalOpenTelemetry 中获取(这一步是为了获取到 Java Agent 中的 sdk 实例,而 micrometer 默认行为是初始化一个新的 sdk 实例。)


@Bean
public OpenTelemetry openTelemetry() {
    return GlobalOpenTelemetry.get();
}


4.下载 Aliyun Java Agent 并在应用的启动脚本中添加以下三行,相关内容获取可以参考接入文档[5],其中:${path-to-agent} 和 ${your-license-key} 分别替换为 Java Agent 的解压路径和从 ARMS 控制台获取到的许可证密钥:


如果您正在使用 K8s 部署的应用,则不需要修改任何的启动命令,直接在您的集群安装 ack-onepilot,并为应用添加相关标签即可,详情可参考文档 [6]。


-javaagent:/${path-to-agent}/aliyun-java-agent.jar
-Darms.licenseKey=${your-license-key}
-Darms.appName=spring-ai-alibaba-chat-demo


5.启动应用并验证效果。


演示效果


1.在浏览器地址栏输入以下链接访问:


http://localhost:8080/ai/func/weather-service?subject=2024年8月12日杭州天气怎么样?


返回如下响应:


2024年8月12日,杭州的天气预报为晴转多云,气温32摄氏度。请做好防晒措施,并留意实际天气变化。


2.登录ARMS控制台,找到spring-ai-alibaba-chat-demo应用查看调用链信息。

image.png

3. 查看某条特定的轨迹,可以查看用药信息及其他关键信息,如大模型的响应id、模型名称、温度等:

image.png

4.点击右侧的“Events”,可以查看到模型调用过程的输入输出信息:

image.png


展望


到目前,Spring AI 阿里巴巴已经全面兼容 Spring AI 最新版本可对接能力,并为通义系列多模态大模型可对接提供了支持。未来将围绕 VectorStore、Retrieve、Tool 等场景集成更加丰富的可对接性,并深度集成 ARMS 产品,提供更多详细的 AI 应用落地视图和总览大盘。您如果对 Spring AI 阿里巴巴项目感兴趣,欢迎参与社区贡献!


社区链接:https://github.com/alibaba/spring-ai-alibaba


参考文档:

[1] 春天AI

https://spring.io/projects/spring-ai

[2] Spring Cloud 阿里巴巴

https://sca.aliyun.com

[3] 在线聊天应用示例

https://github.com/alibaba/spring-ai-alibaba/tree/main/spring-ai-alibaba-examples/function-calling-example

[4] 如何获取API Key

https://help.aliyun.com/zh/model-studio/getting-started/first-api-call-to-qwen?spm=a2c4g.11186623.help-menu-search-2400256.d_0#f92b9b9cc7huw

[5] 手动安装 Java 探针

https://help.aliyun.com/zh/arms/application-monitoring/user-guide/manually-install-arms-agent-for-java-applicati ons?spm=a2c4g.11186623.help-menu-34364.d_2_0_0_1_4.3bee1af54AIgKR&scm=20140722.H_63797._.OR_help-T_cn#DAS#zh-V_1

[6] 监控ACK集群下的Java应用

https://help.aliyun.com/zh/arms/application-monitoring/getting-started/monitoring-java-applications-in-an-ack-cluster

相关实践学习
通过云拨测对指定服务器进行Ping/DNS监测
本实验将通过云拨测对指定服务器进行Ping/DNS监测,评估网站服务质量和用户体验。
相关文章
Open WebUI 和 Dify 在构建企业AI应用时的主要区别
本文对比了企业AI应用构建中的两大开源工具——Open WebUI与Dify,在技术架构、核心能力及适用场景方面的差异。Open WebUI适合轻量级对话场景,侧重本地部署与基础功能;而Dify则聚焦复杂业务流程,提供可视化工作流编排与端到端RAG支持。文章结合典型用例与落地建议,助力企业合理选型并实现高效AI集成。
真·零门槛!原来手搓AI应用这么简单
这是一篇关于如何创作小红书爆款文案的专业指南,涵盖标题技巧、正文结构、情绪表达及关键词运用。内容包括高吸引力标题公式、正文六种开篇模板、关键词库和写作规则,帮助用户高效打造高转化文案。
Open WebUI 和 Dify 在构建企业AI应用时的主要区别
Open WebUI与Dify是企业AI落地的两大开源方案,定位差异显著。Open WebUI专注零代码交互界面开发,适合快速部署对话式前端;Dify提供全栈低代码平台,支持AI应用全生命周期管理。前者优势在轻量化UI组件,后者强于复杂业务编排与企业级功能。企业可根据需求选择前端工具或完整解决方案,亦可组合使用实现最优效果。
在AI应用中Prompt撰写重要却难掌握,‘理解模型与行业知识是关键’:提升迫在眉睫
本文三桥君探讨Prompt优化技巧对AI应用的重要性。内容涵盖理解大语言模型、行业Know-how及Prompt撰写方法,助力提升AI输出质量与应用效率。
103 58
让复杂 AI 应用构建就像搭积木:Spring AI Alibaba Graph 使用指南与源码解读
通过指南和完整的示例项目,你可以快速掌握 Spring AI Alibaba Graph 的使用方法,并在实际项目中高效地构建智能化应用。
469 21
性能提升 10 倍,零改造实现 DIFY 模式迁移至 Spring AI Alibaba 模式
Dify 是一个开源 AI 应用开发平台,支持可视化构建聊天助手和工作流,适用于开发者及企业用户。Spring AI Alibaba(SAA)则是基于 Spring AI 的 AI 框架,深度集成百炼平台,支持 ChatBot 和多智能体应用开发。本文介绍如何将 Dify 平台上的应用导出为 Spring AI Alibaba 工程,提升扩展性、性能与稳定性,并通过示例和测试数据展示其优势。
426 12
|
4天前
|
Java 17 及以上版本核心特性在现代开发实践中的深度应用与高效实践方法 Java 开发实践
本项目以“学生成绩管理系统”为例,深入实践Java 17+核心特性与现代开发技术。采用Spring Boot 3.1、WebFlux、R2DBC等构建响应式应用,结合Record类、模式匹配、Stream优化等新特性提升代码质量。涵盖容器化部署(Docker)、自动化测试、性能优化及安全加固,全面展示Java最新技术在实际项目中的应用,助力开发者掌握现代化Java开发方法。
24 1
|
6天前
|
Redis基本数据类型及Spring Data Redis应用
Redis 是开源高性能键值对数据库,支持 String、Hash、List、Set、Sorted Set 等数据结构,适用于缓存、消息队列、排行榜等场景。具备高性能、原子操作及丰富功能,是分布式系统核心组件。
94 2
Java 8 + 特性及 Spring Boot 与 Hibernate 等最新技术的实操内容详解
本内容涵盖Java 8+核心语法、Spring Boot与Hibernate实操,按考试考点分类整理,含技术详解与代码示例,助力掌握最新Java技术与应用。
26 2
Java 核心知识点与实战应用解析
我梳理的这些内容涵盖了 Java 众多核心知识点。包括 final 关键字的作用(修饰类、方法、变量的特性);重载与重写的区别;反射机制的定义、优缺点及项目中的应用(如结合自定义注解处理数据、框架底层实现)。 还涉及 String、StringBuffer、StringBuilder 的差异;常见集合类及线程安全类,ArrayList 与 LinkedList 的区别;HashMap 的实现原理、put 流程、扩容机制,以及 ConcurrentHashMap 的底层实现。 线程相关知识中,创建线程的四种方式,Runnable 与 Callable 的区别,加锁方式(synchronize
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问