Java也能快速搭建AI应用?一文带你玩转Spring AI可落地性

本文涉及的产品
MSE Nacos 企业版免费试用,1600元额度,限量50份
Serverless 应用引擎免费试用套餐包,4320000 CU,有效期3个月
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
简介: Java语言凭借其成熟的生态与解决方案,特别是通过 Spring AI 框架,正迅速成为 AI 应用开发的新选择。本文将探讨如何利用 Spring AI Alibaba 构建在线聊天 AI 应用,并实现对其性能的全面可观测性。

作者: 希铭


概述


随着LLM(大语言模型)基础技术的不断成熟和应用领域的广泛挖掘,越来越多的企业和开发者开始将LLM技术集成到自己的互联网服务架构中,市场上支撑培育了一款基于LLM技术搭建的爆款应用。Python受益于其丰富的框架和社区生态,成为了队列开发者构建这些AI应用的首选。应用架构急需成熟,吞吐量、访问性能、可扩展性、微服务生态等重要指标也成为大规模开发者和运维人员关注的焦点。正好,经历了互联网考验时代的Java语言在这些方面已经有了很成熟的解决方案和生态。那么,使用Java语言能否也像Python一样搭建出来AI应用呢?


作为炙手可热的Java应用开发框架,Spring给出了解决方案——Spring AI [1]Spring AI旨在简化Java AI应用程序开发,让Java开发者像使用Spring开发普通应用一样开发AI应用。以Spring AI为基础,Spring AI阿里巴巴项目 [2] 引入了阿里云通义系列大模型的全面装备,带来了丰富的工具集和深度的云服务集成,让开发者极速搭建即可实现AI应用。


在生成式AI应用中,可移植性也是一个非常重要的能力,它不仅可以解决应用本身的性能调优、错误追踪等常见问题,还能成为解决AI应用中成本控制、模型偏见、模型幻觉等问题的利器。Spring AI阿里巴巴在Spring AI可移植性基础上进行了扩展,对通义系列大模型及阿里云工具集的可移植性进一步扩展,提供了更多细节的可移植能力。另外,阿里云应用实时监控服务(ARMS)全面集成了Spring AI可落地性数据的支持,用户只需修改业务代码,只需适当调整启动配置,就能获得企业级可落地服务。


本文将基于阿里巴巴 Spring AI,借由通义千问提供的模型服务搭建一个简单的在线聊天 AI 应用,并借助 ARMS 完成对 AI 应用中调用过程的追踪和用量部署。


快速搭建 Spring AI 应用


本示范节如何基于Spring AI阿里巴巴开发一个在线聊天代理应用,并支持大模型调用本地函数来查询某城市某天的天气,可以在查看此处示例源码 [3]


1. 新建一个项目,在项目的 pom.xml 中引入 spring-ai-alibaba-starter 依赖:


<dependency>
  <groupId>com.alibaba.cloud.ai</groupId>
  <artifactId>spring-ai-alibaba-starter</artifactId>
  <version>1.0.0-M3.2</version>
</dependency>


2.修改application.yml,添加dashscope的api key,下面${AI_DASHSCOPE_API_KEY}替换为您通义大模型的API Key,获取方式参见[4]:


spring:
  application:
    name: chatmodel-example

  ai:
    dashscope:
      api-key: ${AI_DASHSCOPE_API_KEY}


3.编写聊天服务控制器类,/weather-service根据客户的提示词天气查询:


@RestController
@RequestMapping("/ai/func")
public class FunctionCallingController {

  private final ChatClient chatClient;

  public FunctionCallingController(ChatClient.Builder chatClientBuilder) {
    this.chatClient = chatClientBuilder.build();
  }

  @GetMapping("/weather-service")
  public String weatherService(String subject) {
    return chatClient.prompt()
      .function("getWeather", "根据城市查询天气", new MockWeatherService())
      .user(subject)
      .call()
      .content();
  }
}


4.编写函数供大模型调用:


public class MockWeatherService implements Function<MockWeatherService.Request, Response> {
  @Override
  public Response apply(Request request) {
    if (request.city().contains("杭州")) {
      return new Response(String.format("%s%s晴转多云, 气温32摄氏度。", request.date(), request.city()));
    }
    else if (request.city().contains("上海")) {
      return new Response(String.format("%s%s多云转阴, 气温31摄氏度。", request.date(), request.city()));
    }
    else {
      return new Response(String.format("暂时无法查询%s的天气状况。", request.city()));
    }
  }

  @JsonInclude(JsonInclude.Include.NON_NULL)
  @JsonClassDescription("根据日期和城市查询天气")
  public record Request(
      @JsonProperty(required = true, value = "city") @JsonPropertyDescription("城市, 比如杭州") String city,
      @JsonProperty(required = true, value = "date") @JsonPropertyDescription("日期, 比如2024-08-22") String date) {
  }
}


5.编写Spring Boot启动类:


@SpringBootApplication
public class FunctionCallingExampleApplication {
  public static void main(String[] args) {
    SpringApplication.run(FunctionCallingExampleApplication.class, args);
  }
}


部署应用


通过以上五步,我们的AI Agent应用已经可以正常部署,要集成可安装性把数据上报到ARMS,还需要做少量的工作。


1.修改application.yml文件,开启可设置相关数据的开关,实际生产中可以接开启:


spring:
  ai:
    chat:
      client:
        observations:
          # 记录调用者输入的内容
          include-input: true
      observations:
          # 记录大模型输出
          include-completion: true
          # 记录大模型提示词
          include-prompt: true


2.修改pom.xml文件,引入可安装性相关依赖:


<dependency>
  <!-- spring 提供的可观测工具包,用于初始化 micrometer 组件 -->
  <groupId>org.springframework.boot</groupId>
  <artifactId>spring-boot-starter-actuator</artifactId>
</dependency>

<dependency>
  <!-- micrometer-opentelemetry 桥接器,用于将 micrometer 链路追踪代理到 opentelemetry -->
  <groupId>io.micrometer</groupId>
  <artifactId>micrometer-tracing-bridge-otel</artifactId>
</dependency>


3. 在 Spring Boot 启动类中调整 OpenTelemetrySdk 获取方式,改为直接从 GlobalOpenTelemetry 中获取(这一步是为了获取到 Java Agent 中的 sdk 实例,而 micrometer 默认行为是初始化一个新的 sdk 实例。)


@Bean
public OpenTelemetry openTelemetry() {
    return GlobalOpenTelemetry.get();
}


4.下载 Aliyun Java Agent 并在应用的启动脚本中添加以下三行,相关内容获取可以参考接入文档[5],其中:${path-to-agent} 和 ${your-license-key} 分别替换为 Java Agent 的解压路径和从 ARMS 控制台获取到的许可证密钥:


如果您正在使用 K8s 部署的应用,则不需要修改任何的启动命令,直接在您的集群安装 ack-onepilot,并为应用添加相关标签即可,详情可参考文档 [6]。


-javaagent:/${path-to-agent}/aliyun-java-agent.jar
-Darms.licenseKey=${your-license-key}
-Darms.appName=spring-ai-alibaba-chat-demo


5.启动应用并验证效果。


演示效果


1.在浏览器地址栏输入以下链接访问:


http://localhost:8080/ai/func/weather-service?subject=2024年8月12日杭州天气怎么样?


返回如下响应:


2024年8月12日,杭州的天气预报为晴转多云,气温32摄氏度。请做好防晒措施,并留意实际天气变化。


2.登录ARMS控制台,找到spring-ai-alibaba-chat-demo应用查看调用链信息。

image.png

3. 查看某条特定的轨迹,可以查看用药信息及其他关键信息,如大模型的响应id、模型名称、温度等:

image.png

4.点击右侧的“Events”,可以查看到模型调用过程的输入输出信息:

image.png


展望


到目前,Spring AI 阿里巴巴已经全面兼容 Spring AI 最新版本可对接能力,并为通义系列多模态大模型可对接提供了支持。未来将围绕 VectorStore、Retrieve、Tool 等场景集成更加丰富的可对接性,并深度集成 ARMS 产品,提供更多详细的 AI 应用落地视图和总览大盘。您如果对 Spring AI 阿里巴巴项目感兴趣,欢迎参与社区贡献!


社区链接:https://github.com/alibaba/spring-ai-alibaba


参考文档:

[1] 春天AI

https://spring.io/projects/spring-ai

[2] Spring Cloud 阿里巴巴

https://sca.aliyun.com

[3] 在线聊天应用示例

https://github.com/alibaba/spring-ai-alibaba/tree/main/spring-ai-alibaba-examples/function-calling-example

[4] 如何获取API Key

https://help.aliyun.com/zh/model-studio/getting-started/first-api-call-to-qwen?spm=a2c4g.11186623.help-menu-search-2400256.d_0#f92b9b9cc7huw

[5] 手动安装 Java 探针

https://help.aliyun.com/zh/arms/application-monitoring/user-guide/manually-install-arms-agent-for-java-applicati ons?spm=a2c4g.11186623.help-menu-34364.d_2_0_0_1_4.3bee1af54AIgKR&scm=20140722.H_63797._.OR_help-T_cn#DAS#zh-V_1

[6] 监控ACK集群下的Java应用

https://help.aliyun.com/zh/arms/application-monitoring/getting-started/monitoring-java-applications-in-an-ack-cluster

相关实践学习
通过轻量消息队列(原MNS)主题HTTP订阅+ARMS实现自定义数据多渠道告警
本场景将自定义告警信息同时分发至多个通知渠道的需求,例如短信、电子邮件及钉钉群组等。通过采用轻量消息队列(原 MNS)的主题模型的HTTP订阅方式,并结合应用实时监控服务提供的自定义集成能力,使得您能够以简便的配置方式实现上述多渠道同步通知的功能。
目录
打赏
0
94
95
19
12915
分享
相关文章
GPT为定制AI应用工程师转型第一周学习计划
本计划帮助开发者快速入门AI领域,首周涵盖AI基础理论、Python编程及PyTorch实战。前两天学习机器学习、深度学习与Transformer核心概念,掌握LLM工作原理。第三至四天快速掌握Python语法与Jupyter使用,完成基础编程任务。第五至七天学习PyTorch,动手训练MNIST手写识别模型,理解Tensor操作与神经网络构建。
63 0
BISHENG下一代企业AI应用的“全能型“LLM软件
杭州奥零数据科技有限公司成立于2023年,专注于数据中台业务,维护开源项目AllData并提供商业版解决方案。AllData提供数据集成、存储、开发、治理及BI展示等一站式服务,支持AI大模型应用,助力企业高效利用数据价值。
附部署代码|云数据库RDS 全托管 Supabase服务:小白轻松搞定开发AI应用!
本文通过一个 Agentic RAG 应用的完整构建流程,展示了如何借助 RDS Supabase 快速搭建具备知识处理与智能决策能力的 AI 应用,展示从数据准备到应用部署的全流程,相较于传统开发模式效率大幅提升。
附部署代码|云数据库RDS 全托管 Supabase服务:小白轻松搞定开发AI应用
本文通过一个 Agentic RAG 应用的完整构建流程,展示了如何借助 RDS Supabase 快速搭建具备知识处理与智能决策能力的 AI 应用,展示从数据准备到应用部署的全流程,相较于传统开发模式效率大幅提升。
附部署代码|云数据库RDS 全托管 Supabase服务:小白轻松搞定开发AI应用
Java 大视界 -- 基于 Java 的大数据可视化在企业供应链风险预警与决策支持中的应用(204)
本篇文章探讨了基于 Java 的大数据可视化技术在企业供应链风险预警与决策支持中的深度应用。文章系统介绍了从数据采集、存储、处理到可视化呈现的完整技术方案,结合供应链风险预警与决策支持的实际案例,展示了 Java 大数据技术如何助力企业实现高效、智能的供应链管理。
Java 大视界 -- Java 大数据在智能医疗手术风险评估与术前方案制定中的应用探索(203)
本文探讨了Java大数据技术在智能医疗手术风险评估与术前方案制定中的创新应用。通过多源数据整合、智能分析模型构建及知识图谱技术,提升手术风险预测准确性与术前方案制定效率,助力医疗决策智能化,推动精准医疗发展。
|
12天前
|
在Spring Boot中应用Jasypt以加密配置信息。
通过以上步骤,可以在Spring Boot应用中有效地利用Jasypt对配置信息进行加密,这样即使配置文件被泄露,其中的敏感信息也不会直接暴露给攻击者。这是一种在不牺牲操作复杂度的情况下提升应用安全性的简便方法。
146 0
Java 大视界 -- Java 大数据在智能政务公共资源交易数据分析与监管中的应用(202)
本篇文章深入探讨了 Java 大数据在智能政务公共资源交易监管中的创新应用。通过构建高效的数据采集、智能分析与可视化决策系统,Java 大数据技术成功破解了传统监管中的数据孤岛、效率低下和监管滞后等难题,为公共资源交易打造了“智慧卫士”,助力政务监管迈向智能化、精准化新时代。
Java 大视界 -- Java 大数据在智能体育赛事运动员体能监测与训练计划调整中的应用(200)
本篇文章聚焦 Java 大数据在智能体育赛事中对运动员体能监测与训练计划的智能化应用。通过构建实时数据采集与分析系统,结合机器学习模型,实现对运动员体能状态的精准评估与训练方案的动态优化,推动体育训练迈向科学化、个性化新高度。
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问