Eino:字节跳动开源基于Golang的AI应用开发框架,组件化设计助力构建AI应用

本文涉及的产品
NLP自然语言处理_高级版,每接口累计50万次
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_基础版,每接口每天50万次
简介: Eino 是字节跳动开源的大模型应用开发框架,帮助开发者高效构建基于大模型的 AI 应用。支持组件化设计、流式处理和可视化开发工具。

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


大家好,我是蚝油菜花,今天跟大家分享一下 Eino 这个由字节跳动开源的大模型应用开发框架。

🚀 快速阅读

Eino 是字节跳动开源的大模型应用开发框架,旨在帮助开发者高效构建基于大模型的 AI 应用。

  1. 核心功能:组件化设计、图编排引擎、流式处理机制、回调机制。
  2. 技术原理:基于 Go 语言,支持稳定的内核、灵活的扩展性和完善的工具生态。

Eino 是什么

Eino

Eino 是字节跳动开源的大模型应用开发框架,能够帮助开发者高效构建基于大模型的 AI 应用。它以 Go 语言为基础,具备稳定的内核、灵活的扩展性和完善的工具生态。Eino 的核心是组件化设计,通过定义不同的组件(如 ChatModel、Lambda 等)和编排方式(如 Chain 和 Graph),开发者可以灵活地构建复杂的业务逻辑。此外,Eino 支持流式处理,自动处理流的拼接和复制等细节,提升应用性能。Eino 还提供了可视化开发工具 EinoDev,降低了开发门槛,并结合 Langfuse 平台进行运行观测。

Eino 的目标是成为 Golang 中最好的大模型应用开发框架,借鉴了开源社区中的优秀框架(如 LangChain 和 LlamaIndex),并结合了最新的研究和实际应用场景,强调简单性、可扩展性、可靠性和高效性,更好地符合 Golang 编程规范。

Eino 的主要功能

  • 丰富的组件:将常见构建模块抽象为组件,每个组件有多种实现,支持嵌套和复杂业务逻辑。
  • 强大的编排:基于图编排实现数据流的有向、可控传输,支持类型检查、流处理、并发管理等。
  • 完善的流处理:自动处理流式与非流式数据的转换、拼接、合并和复制。
  • 高扩展性的切面(Callbacks):支持多种切面,用于日志记录、追踪、指标统计等,暴露组件实现的内部细节。

Eino 的技术原理

  • 组件化架构:Eino 将应用逻辑拆分为多个组件,每个组件负责特定的功能(如文本生成、数据检索、工具调用等)。组件基于定义好的接口进行交互,开发者根据需求选择或实现具体的组件。
  • 图编排引擎:用图(Graph)表示组件之间的依赖关系和执行顺序。每个组件是一个节点(Node),节点之间的连接关系(边 Edge)定义数据的流转路径。支持分支逻辑(Branch),根据条件动态选择不同的执行路径。
  • 流式处理机制:支持流式输入和输出,自动处理流的拼接(Concat)和流化(T -> StreamReader[T]),提升应用的实时性和性能。
  • 回调机制(Callbacks):提供 Callbacks 机制,支持开发者在组件运行的开始和结束时插入自定义逻辑。基于回调函数,开发者可以实现日志记录、性能监控等功能。
  • 向量化知识库:提供工具将知识库内容进行向量化处理,并存储到向量数据库(如 Redis)中。在应用运行时,基于语义检索从知识库中召回相关信息,增强应用的知识背景支持。
  • 可视化开发工具:提供 EinoDev 插件,支持可视化界面进行组件选择和编排。开发者可以通过拖拽组件的方式快速构建应用逻辑,并生成对应的代码。

如何运行 Eino

1. 使用组件直接调用

model, _ := openai.NewChatModel(ctx, config) // 创建一个可调用的 LLM 实例
message, _ := model.Generate(ctx, []*Message{
    SystemMessage("you are a helpful assistant."),
    UserMessage("what does the future AI App look like?")})
AI 代码解读

2. 使用编排创建简单的链

eino_simple_chain

chain, _ := NewChain[map[string]any, *Message]().
           AppendChatTemplate(prompt).
           AppendChatModel(model).
           Compile(ctx)

chain.Invoke(ctx, map[string]any{"query": "what's your name?"})
AI 代码解读

3. 使用图编排创建更复杂的逻辑

eino_tool_call_graph

graph := NewGraph[map[string]any, *schema.Message]()

_ = graph.AddChatTemplateNode("node_template", chatTpl)
_ = graph.AddChatModelNode("node_model", chatModel)
_ = graph.AddToolsNode("node_tools", toolsNode)
_ = graph.AddLambdaNode("node_converter", takeOne)

_ = graph.AddEdge(START, "node_template")
_ = graph.AddEdge("node_template", "node_model")
_ = graph.AddBranch("node_model", branch)
_ = graph.AddEdge("node_tools", "node_converter")
_ = graph.AddEdge("node_converter", END)

compiledGraph, err := graph.Compile(ctx)
if err != nil {
    return err
}
out, err := r.Invoke(ctx, map[string]any{"query":"Beijing's weather this weekend"})
AI 代码解读

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

目录
打赏
0
26
27
0
356
分享
相关文章
AI Agent:构建以数据为中心的智能体
在过去一年里大模型领域主要有两大领域的热点,一个是 LLM,几乎每月速度革新,大家关心的是效果和成本。另一个是 AI Agent,大家尝试解决各个领域应用问题,大家关心的是场景和竞争力。下面我们重点分享一下 AI Agent 的趋势和实践。
Archon – 开源 AI 智能体框架,自主生成代码构建 AI 智能体
Archon 是一个开源的 AI 智能体框架,能够自主生成代码并优化智能体性能,支持多智能体协作、领域知识集成和文档爬取等功能,适用于企业、教育、智能家居等多个领域。
166 10
Archon – 开源 AI 智能体框架,自主生成代码构建 AI 智能体
36.7K star!拖拽构建AI流程,这个开源LLM应用框架绝了!
`Flowise` 是一款革命性的低代码LLM应用构建工具,开发者通过可视化拖拽界面,就能快速搭建基于大语言模型的智能工作流。该项目在GitHub上线不到1年就斩获**36.7K星标**,被开发者誉为"AI时代的乐高积木"。
构建企业AI的信任与信心基石:从认知到实践的全面升级
本文探讨企业在人工智能(AI)广泛应用背景下面临的信任与信心挑战,提出通过数据安全、技术透明度及技能认证构建信任体系。重点介绍生成式人工智能认证(GAI),其能助力企业培养AI人才,提升团队专业能力。文章还建议企业加强内部培训、外部合作与实战应用评估,全方位推动AI战略落地,为企业发展提供支持。
AI职场突围战:夸克应用+生成式人工智能认证,驱动“打工人”核心竞争力!
在AI浪潮推动下,生成式人工智能(GAI)成为职场必备工具。文中对比了夸克、豆包、DeepSeek和元宝四大AI应用,夸克以“超级入口”定位脱颖而出。同时,GAI认证为职场人士提供系统学习平台,与夸克结合助力职业发展。文章还探讨了职场人士如何通过加强学习、关注技术趋势及培养合规意识,在AI时代把握机遇。
多模态AI核心技术:CLIP与SigLIP技术原理与应用进展
近年来,多模态表示学习在人工智能领域取得显著进展,CLIP和SigLIP成为里程碑式模型。CLIP由OpenAI提出,通过对比学习对齐图像与文本嵌入空间,具备强大零样本学习能力;SigLIP由Google开发,采用sigmoid损失函数优化训练效率与可扩展性。两者推动了多模态大型语言模型(MLLMs)的发展,如LLaVA、BLIP-2和Flamingo等,实现了视觉问答、图像描述生成等复杂任务。这些模型不仅拓展了理论边界,还为医疗、教育等领域释放技术潜力,标志着多模态智能系统的重要进步。
41 13
多模态AI核心技术:CLIP与SigLIP技术原理与应用进展
从零开始即刻拥有 DeepSeek-R1 满血版并使用 Dify 部署 AI 应用
本文介绍了如何使用阿里云提供的DeepSeek-R1大模型解决方案,通过Chatbox和Dify平台调用百炼API,实现稳定且高效的模型应用。首先,文章详细描述了如何通过Chatbox配置API并开始对话,适合普通用户快速上手。接着,深入探讨了使用Dify部署AI应用的过程,包括选购云服务器、安装Dify、配置对接DeepSeek-R1模型及创建工作流,展示了更复杂场景下的应用潜力。最后,对比了Chatbox与Dify的输出效果,证明Dify能提供更详尽、精准的回复。总结指出,阿里云的解决方案不仅操作简便,还为专业用户提供了强大的功能支持,极大提升了用户体验和应用效率。
1181 19
从零开始即刻拥有 DeepSeek-R1 满血版并使用 Dify 部署 AI 应用
帮你整理好了,AI 网关的 8 个常见应用场景
通过 SLS 还可以汇总 Actiontrail 事件、云产品可观测日志、LLM 网关明细日志、详细对话明细日志、Prompt Trace 和推理实时调用明细等数据汇总,从而建设完整统一的可观测方案。
【AI落地应用实战】大模型加速器2.0:基于 ChatDoc + TextIn ParseX+ACGE的RAG知识库问答系统
本文探讨了私有知识库问答系统的难点及解决方案,重点分析了企业知识管理中的痛点,如信息孤岛、知识传承依赖个人经验等问题。同时,介绍了IntFinQ这款知识管理工具的核心特点和实践体验,包括智能问答、深度概括与多维数据分析等功能。文章还详细描述了IntFinQ的本地化部署过程,展示了其从文档解析到知识应用的完整技术闭环,特别是自研TextIn ParseX引擎和ACGE模型的优势。最后总结了该工具对企业和开发者的价值,强调其在提升知识管理效率方面的潜力。
AI程序员:通义灵码 2.0应用VScode前端开发深度体验
AI程序员:通义灵码 2.0应用VScode前端开发深度体验,在软件开发领域,人工智能技术的融入正深刻改变着程序员的工作方式。通义灵码 2.0 作为一款先进的 AI 编程助手,与广受欢迎的代码编辑器 Visual Studio Code(VScode)相结合,为前端开发带来了全新的可能性。本文将详细分享通义灵码 2.0 在 VScode 前端开发环境中的深度使用体验。
159 2

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等