Agno:18.7K Star!快速构建多模态智能体的轻量级框架,运行速度比LangGraph快5000倍!

本文涉及的产品
图像搜索,任选一个服务类型 1个月
简介: Agno 是一个用于构建多模态智能体的轻量级框架,支持文本、图像、音频和视频等多种数据模态,能够快速创建智能体并实现高效协作。

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


大家好,我是蚝油菜花,今天跟大家分享一下 Agno 这个用于构建多模态智能体的轻量级框架。

🚀 快速阅读

Agno 是一个用于构建多模态智能体的轻量级框架。

  1. 核心功能:支持文本、图像、音频和视频等多种数据模态,创建智能体的速度比传统框架快 5000 倍。
  2. 技术原理:基于 Python 实现,无依赖性设计,支持与向量数据库集成,实现高效的检索增强生成(RAG)或动态少样本学习。

Agno 是什么

Agno

Agno 是一个用于构建多模态智能体的轻量级框架。它支持多种数据模态(如文本、图像、音频和视频),并且可以快速创建智能体。Agno 提供了内存管理和知识库支持,能够将用户会话和智能体状态存储在数据库中,基于向量数据库实现动态少样本学习。此外,Agno 支持多智能体协作,帮助用户实时跟踪智能体会话和性能。

Agno 的设计目标是简化开发流程,提升性能,并确保灵活性。通过无依赖性架构和纯 Python 实现,开发者可以轻松上手并快速构建高效的智能体应用。

Agno 的主要功能

  • 极速智能体创建:创建智能体的速度比传统框架(如 LangGraph)快 5000 倍。
  • 模型无关性:支持任何模型和提供商,用户可以根据需要选择不同的模型,无需担心供应商锁定。
  • 多模态支持:原生支持文本、图像、音频和视频等多种数据模态。
  • 多智能体协作:支持将任务分配给多个专业化的智能体,实现高效的分工和协作。
  • 内存管理:将用户会话和智能体状态存储在数据库中,确保数据的持久化和安全性。
  • 知识库支持:基于向量数据库实现检索增强生成(RAG)或动态少样本学习,提升智能体的知识检索能力。
  • 结构化输出:智能体支持结构化数据格式响应,方便与其他系统集成。
  • 实时监控:在 agno.com 上实时跟踪智能体会话和性能,便于管理和优化。

Agno 的技术原理

  • 纯 Python 实现:Agno 基于 Python 编写,避免复杂的图结构、链式调用或其他复杂的模式,让代码更加简洁易懂,同时也便于开发者快速上手。
  • 无依赖性架构:用无依赖性设计,支持任何模型、任何提供商和任何模态。
  • 向量数据库集成:支持与向量数据库集成,利用向量数据库的高效检索能力,实现检索增强生成(RAG)或动态少样本学习。
  • 多智能体协作机制:基于任务分配和分工,将复杂任务分解为多个子任务,由不同的专业智能体分别处理。

如何运行 Agno

1. 安装 Agno

pip install -U agno
AI 代码解读

2. 创建基本智能体

from agno.agent import Agent
from agno.models.openai import OpenAIChat

agent = Agent(
    model=OpenAIChat(id="gpt-4o"),
    description="You are an enthusiastic news reporter with a flair for storytelling!",
    markdown=True
)
agent.print_response("Tell me about a breaking news story from New York.", stream=True)
AI 代码解读

要运行该智能体,请安装依赖项并导出 OPENAI_API_KEY

pip install agno openai

export OPENAI_API_KEY=sk-xxxx

python basic_agent.py
AI 代码解读

3. 创建带有工具的智能体

from agno.agent import Agent
from agno.models.openai import OpenAIChat
from agno.tools.duckduckgo import DuckDuckGoTools

agent = Agent(
    model=OpenAIChat(id="gpt-4o"),
    description="You are an enthusiastic news reporter with a flair for storytelling!",
    tools=[DuckDuckGoTools()],
    show_tool_calls=True,
    markdown=True
)
agent.print_response("Tell me about a breaking news story from New York.", stream=True)
AI 代码解读

安装依赖项并运行智能体:

pip install duckduckgo-search

python agent_with_tools.py
AI 代码解读

4. 创建带有知识库的智能体

from agno.agent import Agent
from agno.models.openai import OpenAIChat
from agno.embedder.openai import OpenAIEmbedder
from agno.tools.duckduckgo import DuckDuckGoTools
from agno.knowledge.pdf_url import PDFUrlKnowledgeBase
from agno.vectordb.lancedb import LanceDb, SearchType

agent = Agent(
    model=OpenAIChat(id="gpt-4o"),
    description="You are a Thai cuisine expert!",
    instructions=[
        "Search your knowledge base for Thai recipes.",
        "If the question is better suited for the web, search the web to fill in gaps.",
        "Prefer the information in your knowledge base over the web results."
    ],
    knowledge=PDFUrlKnowledgeBase(
        urls=["https://agno-public.s3.amazonaws.com/recipes/ThaiRecipes.pdf"],
        vector_db=LanceDb(
            uri="tmp/lancedb",
            table_name="recipes",
            search_type=SearchType.hybrid,
            embedder=OpenAIEmbedder(id="text-embedding-3-small"),
        ),
    ),
    tools=[DuckDuckGoTools()],
    show_tool_calls=True,
    markdown=True
)

# Comment out after the knowledge base is loaded
if agent.knowledge is not None:
    agent.knowledge.load()

agent.print_response("How do I make chicken and galangal in coconut milk soup", stream=True)
agent.print_response("What is the history of Thai curry?", stream=True)
AI 代码解读

安装依赖项并运行智能体:

pip install lancedb tantivy pypdf duckduckgo-search

python agent_with_knowledge.py
AI 代码解读

5. 创建多智能体协作

from agno.agent import Agent
from agno.models.openai import OpenAIChat
from agno.tools.duckduckgo import DuckDuckGoTools
from agno.tools.yfinance import YFinanceTools

web_agent = Agent(
    name="Web Agent",
    role="Search the web for information",
    model=OpenAIChat(id="gpt-4o"),
    tools=[DuckDuckGoTools()],
    instructions="Always include sources",
    show_tool_calls=True,
    markdown=True,
)

finance_agent = Agent(
    name="Finance Agent",
    role="Get financial data",
    model=OpenAIChat(id="gpt-4o"),
    tools=[YFinanceTools(stock_price=True, analyst_recommendations=True, company_info=True)],
    instructions="Use tables to display data",
    show_tool_calls=True,
    markdown=True,
)

agent_team = Agent(
    team=[web_agent, finance_agent],
    model=OpenAIChat(id="gpt-4o"),
    instructions=["Always include sources", "Use tables to display data"],
    show_tool_calls=True,
    markdown=True,
)

agent_team.print_response("What's the market outlook and financial performance of AI semiconductor companies?", stream=True)
AI 代码解读

安装依赖项并运行智能体团队:

pip install duckduckgo-search yfinance

python agent_team.py
AI 代码解读

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

目录
打赏
0
20
22
0
404
分享
相关文章
革新智能驾驶数据挖掘检索效率!某国内新能源汽车未来出行领导者选择阿里云Milvus构建多模态检索引擎
在智能驾驶技术快速发展中,数据成为驱动算法进步的核心。某新能源汽车领军企业基于阿里云Milvus向量数据库构建智能驾驶数据挖掘平台,利用其高性能、可扩展的相似性检索服务,解决了大规模向量数据检索瓶颈问题,显著降低20%以上成本,缩短模型迭代周期,实现从数据采集到场景挖掘的智能化闭环,加速智能驾驶落地应用。
革新智能驾驶数据挖掘检索效率!某国内新能源汽车未来出行领导者选择阿里云Milvus构建多模态检索引擎
构建可落地的企业AI Agent,背后隐藏着怎样的技术密码?
三桥君深入解析企业AI Agent技术架构,涵盖语音识别、意图理解、知识库协同、语音合成等核心模块,探讨如何实现业务闭环与高效人机交互,助力企业智能化升级。
145 6
利用通义大模型构建个性化推荐系统——从数据预处理到实时API部署
本文详细介绍了基于通义大模型构建个性化推荐系统的全流程,涵盖数据预处理、模型微调、实时部署及效果优化。通过采用Qwen-72B结合LoRA技术,实现电商场景下CTR提升58%,GMV增长12.7%。文章分析了特征工程、多任务学习和性能调优的关键步骤,并探讨内存优化与蒸馏实践。最后总结了大模型在推荐系统中的适用场景与局限性,提出未来向MoE架构和因果推断方向演进的建议。
401 10
JBoltAI 框架完整实操案例 在 Java 生态中快速构建大模型应用全流程实战指南
本案例基于JBoltAI框架,展示如何快速构建Java生态中的大模型应用——智能客服系统。系统面向电商平台,具备自动回答常见问题、意图识别、多轮对话理解及复杂问题转接人工等功能。采用Spring Boot+JBoltAI架构,集成向量数据库与大模型(如文心一言或通义千问)。内容涵盖需求分析、环境搭建、代码实现(知识库管理、核心服务、REST API)、前端界面开发及部署测试全流程,助你高效掌握大模型应用开发。
292 5
云上玩转Qwen3系列之三:PAI-LangStudio x Hologres构建ChatBI数据分析Agent应用
PAI-LangStudio 和 Qwen3 构建基于 MCP 协议的 Hologres ChatBI 智能 Agent 应用,通过将 Agent、MCP Server 等技术和阿里最新的推理模型 Qwen3 编排在一个应用流中,为大模型提供了 MCP+OLAP 的智能数据分析能力,使用自然语言即可实现 OLAP 数据分析的查询效果,减少了幻觉。开发者可以基于该模板进行灵活扩展和二次开发,以满足特定场景的需求。
蚂蚁百宝箱 3 分钟上手 MCP:6 步轻松构建 Qwen3 智能体应用并发布小程序
本文介绍如何用6个步骤、3分钟快速构建一个基于Qwen3与蚂蚁百宝箱MCP的智能体应用,并发布为支付宝小程序。通过结合Qwen3强大的语言理解和生成能力,以及支付宝MCP提供的支付功能,开发者可轻松打造具备商业价值的“数字员工”。案例以“全球智能导游助手”为例,支持119种语言,不仅提供旅行建议,还能收取用户打赏。文章详细说明了从登录百宝箱、创建应用、添加插件到配置角色、发布上架及手机端体验的完整流程,同时提醒当前支付功能仅适用于测试环境。适合希望探索AI应用变现潜力的开发者尝试。
609 14
Yuxi-Know:开源智能问答系统,基于大模型RAG与知识图谱技术快速构建知识库
Yuxi-Know是一个结合大模型RAG知识库与知识图谱技术的智能问答平台,支持多格式文档处理和复杂知识关系查询,具备多模型适配和智能体拓展能力。
877 0
Yuxi-Know:开源智能问答系统,基于大模型RAG与知识图谱技术快速构建知识库
构建可靠AI Agent:从提示词、工作流到知识库的实战指南
本文系统阐述了在当前 Agentic AI 技术快速发展的背景下,如何构建一个可靠、高效且可落地的 AI Agent 应用。随着 LLM 和工具调用的标准化,开发的核心竞争力已转向 提示词工程(Prompt Engineering)、工作流设计(Workflow)和知识库构建(RAG) 三大领域。
构建可靠AI Agent:从提示词、工作流到知识库的实战指南
从零开始构建AI Agent评估体系:12种LangSmith评估方法详解
AI Agent的评估需覆盖其整个生命周期,从开发到部署,综合考量事实准确性、推理路径、工具选择、结构化输出、多轮对话及实时性能等维度。LangSmith作为主流评估平台,提供了一套全面的评估框架,支持12种评估技术,包括基于标准答案、程序性分析及观察性评估。这些技术可有效监控Agent各组件表现,确保其在真实场景中的稳定性和可靠性。
451 0
从零开始构建AI Agent评估体系:12种LangSmith评估方法详解

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问