阿里云 EMR Serverless Spark 在微财机器学习场景下的应用

本文涉及的产品
EMR Serverless Spark 免费试用,1000 CU*H 有效期3个月
EMR Serverless StarRocks,5000CU*H 48000GB*H
简介: 面对机器学习场景下的训练瓶颈,微财选择基于阿里云 EMR Serverless Spark 建立数据平台。通过 EMR Serverless Spark,微财突破了单机训练使用的数据规模瓶颈,大幅提升了训练效率,解决了存算分离架构下 Shuffle 稳定性和性能困扰,为智能风控等业务提供了强有力的技术支撑。

作者微财技术研发经理 宋鑫

微财介绍

微财是一家创新型的金融科技企业,凭借多年积累的金融科技能力和数据处理优势,为客户提供消费分期等金融信息服务,致力于成为值得信赖的金融机构合作伙伴。旗下拥有好分期等品牌,为高成长用户提供信用分期借款过程中的综合性信息、技术以及辅助服务。

业务挑战

数据资源是金融科技企业的核心价值,微财依托大数据评估用户借款过程中的风险,随着微财业务的快速发展,积累了大量用户数据,大数据集的训练逐渐成为瓶颈,其成熟度对业务的重要性不言而喻。根据性能、成本、安全、易用性、可靠性和扩展性等多维度评估,我们可以发现,要搭建一套成熟、稳定且高效的大数据模型训练平台需要耗费大量人力和时间成本。

选择 Spark 技术栈

在数据平台计算引擎层技术选型上,前期的架构选型我们做了很多的调研,综合各个方面考虑,望选择一个成熟且统一的平台:既能够支持数据处理、数据分析场景,也能够很好地支撑数据科学场景。加上团队成员对 Python 及 Spark 的经验丰富, 且 Spark 拥有比较成熟的机器学习生态,所以,从一开始就将目标锁定到了 Spark 技术栈。

为什么选择阿里云 EMR Serverless Spark

在机器学习场景下需要解决的问题:

  • 一是要突破单机训练使用的数据规模的瓶颈;
  • 二是要提高训练的效率,EMR Serverless Spark 的全托管服务、灵活的弹性扩缩容很好的满足了这两点问题,保证了用户级别的独立资源供给。

通过与阿里云计算平台 EMR 团队进行多方面的技术交流以及实际的概念验证,我们最终选择了阿里云 EMR Serverless Spark。作为 一站式全托管湖仓分析平台,其自研 Fusion 引擎,内置高性能向量化计算和 RSS 能力,统一的数据工程和数据科学等,都是我们决定选择 EMR Serverless Spark 的重要原因。

具体来看,EMR Serverless Spark 提供的核心优势如下:

1. 引擎性能大幅提升:自研 Fusion 引擎,内置高性能向量化计算和 RSS 能力,相对开源版本性能提升 3 倍以上;


2. 完整 Spark 技术栈集成:支持使用 DataFrame、SQL、PySpark 等多种编程方式开发批、流、交互式分析、机器学习等不同类型的任务,并进行调度执行;支持通过 Spark Submit、Livy、Spark Thrift Server 等开源兼容的方式进行任务提交;提供内置 SQL Editor 和 Notebook,提供 ETL 和数据科学一体化开发体验;


3. Serverless 全托管服务:开箱即用,免运维,无需关注底层资源情况,降低运维成本,聚焦分析业务,秒级资源供给,按任务级别弹性扩缩容;


4. 高品质支持以及SLA保障阿里云提供覆盖 EMR Serverless Spark 的技术支持;提供商业化 SLA 保障与7*24小时 EMR Serverless Spark 专家支持服务;


5. 总成本降低:自研 Fusion 性能优势显著;同时基于计算存储分离架构,存储依托阿里云 OSS;能够有效降低集群总体使用成本


“EMR Serverless Spark 让我们有了单独的资源池进行模型训练,避免了资源冲突,同时还解决了我们在存算分离架构下需要处理 Shuffle 稳定性和性能问题的困扰。

——微财产品技术研发负责人”

技术数据平台整体架构

数据采集

在微财数据仓库搭建的初期,我们自主研发了 dw-shell 工具,提供了完善的数据采集能力,并且屏蔽了存储引擎和计算引擎之间的差异。这一工具在我们的上云过程中发挥了至关重要的作用,帮助我们在一个月内完成了所有大数据计算任务的全量迁移。

数据入湖

在数据入湖方面,我们采用了 Apache Paimon 作为数据湖存储框架,并集成了 Apache Spark、Flink 和 Hive 作为计算引擎,构建了一个完整的数据湖生态系统。这一系统已经在实时数据监控和分析等场景中得到了成熟的应用,显著提升了我们的数据处理能力和业务效率。

数据科学

我们将机器学习的训练过程从单机训练迁移到了大数据集群,采用本地 Python 环境 + 云端训练的方式,将训练任务提交到 EMR Serverless Spark,保证了本地开发灵活性的同时,充分利用了集群的计算资源,通过自研的模型开发框架 vulcan-x,使分布式训练代码的编写、超参调优与本地开发无异,大幅降低了分布式训练代码编写的难度,基本消除了数据科学家开发的学习成本。

典型应用场景介绍

智能风控

为了帮助数据科学家无缝将训练任务迁移到 EMR Serverless Spark 执行,我们搭建了风控能力平台 MX FLow,提供以下几方面的能力。

特征挖掘支持

我们在 EMR Serverless Spark 实现了特征挖掘常用的分箱方法,如等频分箱、决策树分箱、卡方分箱等,以及特征评估的相关函数,支持用户使用分布式能力将特征离散化,评估特征的风险区分度。

分布式训练

基于 Spark MLlib 成熟的机器学习生态,我们结合了 Spark MLlib 内置算法、以及相关开源算法,如 SynapseML 提供的 lightgbm 分布式实现,为用户提供与本机训练相同的 API,截至目前累计支持了随机森林、逻辑回归、lightgbm、catboot、xgboost 等算法。

image.png

实际测试中发现,训练耗时基本与数据集的 shape(行数 x 列数) 成正比。在常用的训练 PC 上 400万行的训练集,机器内存已经达到瓶颈,使用 EMR Serverless Spark 默认参数进行分布式训练,训练集 5000 万行时,训练耗时在 20 min 左右。

image.png

自动项目管理

MX Flow 与 vulcan-x 配合使用,形成客户端与服务端的交互模式,用户在本地使用 vulcan-x 编写运行的代码产生的过程或结果数据,自动以数据集服务在服务端组织起来,提供可视化过程数据报告、模型管理等功能。服务端也提供了完整的超参调优功能,兼容开源工具 Optuna,提供调优过程 Dashboard。


image.png image.png image.png

总结与展望

随着微财业务数据量的不断增长,我们将会进一步拓展分布式训练的规模。微财在智能风控场景中已经开始深度学习能力的探索,利用多节点的分布式训练框架,如 Horovod、PyTorch Distributed 等,加速大规模深度学习模型的训练过程。未来也希望能够在 EMR Serverless Spark 上能够使用到 GPU 训练的能力,共同探索分布式训练在深度学习领域的应用方向,提高训练效率和可扩展性。


阿里云 EMR Serverless Spark 版是阿里云开源大数据平台 E-MapReduce 基于 Spark 提供的一款全托管、一站式的数据计算平台。它为用户提供任务开发、调试、发布、调度和运维等全方位的产品化服务,显著简化了大数据计算的工作流程,使用户能更专注于数据分析和价值提炼


EMR Serverless Spark 交流钉钉群:58570004119。

image.png

相关实践学习
1分钟 Serverless搭建高性能网盘
本场景将使用阿里云函数计算、文件存储NAS以及开源项目Kodbox,带大家1分钟Serverless搭建个人高性能网盘,网盘可长期使用。
建立 Serverless 思维
本课程包括: Serverless 应用引擎的概念, 为开发者带来的实际价值, 以及让您了解常见的 Serverless 架构模式
目录
打赏
0
15
15
0
127
分享
相关文章
云上玩转Qwen3系列之三:PAI-LangStudio x Hologres构建ChatBI数据分析Agent应用
PAI-LangStudio 和 Qwen3 构建基于 MCP 协议的 Hologres ChatBI 智能 Agent 应用,通过将 Agent、MCP Server 等技术和阿里最新的推理模型 Qwen3 编排在一个应用流中,为大模型提供了 MCP+OLAP 的智能数据分析能力,使用自然语言即可实现 OLAP 数据分析的查询效果,减少了幻觉。开发者可以基于该模板进行灵活扩展和二次开发,以满足特定场景的需求。
立马耀:通过阿里云 Serverless Spark 和 Milvus 构建高效向量检索系统,驱动个性化推荐业务
蝉妈妈旗下蝉选通过迁移到阿里云 Serverless Spark 及 Milvus,解决传统架构性能瓶颈与运维复杂性问题。新方案实现离线任务耗时减少40%、失败率降80%,Milvus 向量检索成本降低75%,支持更大规模数据处理,查询响应提速。
212 57
鹰角网络:EMR Serverless Spark 在《明日方舟》游戏业务的应用
鹰角网络为应对游戏业务高频活动带来的数据潮汐、资源弹性及稳定性需求,采用阿里云 EMR Serverless Spark 替代原有架构。迁移后实现研发效率提升,支持业务快速发展、计算效率提升,增强SLA保障,稳定性提升,降低运维成本,并支撑全球化数据架构部署。
360 56
鹰角网络:EMR Serverless Spark 在《明日方舟》游戏业务的应用
一体系数据平台的进化:基于阿里云 EMR Serverless Spark 的持续演进
本文介绍了一体系汽配供应链平台如何借助阿里云EMR Serverless Spark实现从传统Hadoop平台向云原生架构的迁移。通过融合高质量零部件供应与创新互联网科技,一体系利用EMR Serverless Spark和DataWorks构建高效数据分析体系,解决大规模数据处理瓶颈。方案涵盖实时数据集成、Lakehouse搭建、数仓分层设计及BI/ML应用支持,显著提升数据处理性能与业务响应速度,降低运维成本,为数字化转型奠定基础。最终实现研发效率提升、运维压力减轻,并推动AI技术深度整合,迈向智能化云原生数据平台。
Fusion 引擎赋能:流利说如何用阿里云 Serverless Spark 实现数仓计算加速
本文介绍了流利说与阿里云合作,利用EMR Serverless Spark优化数据处理的全过程。流利说是科技驱动的教育公司,通过AI技术提升用户英语水平。原有架构存在资源管理、成本和性能等痛点,采用EMR Serverless Spark后,实现弹性资源管理、按需计费及性能优化。方案涵盖数据采集、存储、计算到查询的完整能力,支持多种接入方式与高效调度。迁移后任务耗时减少40%,失败率降低80%,成本下降30%。未来将深化合作,探索更多行业解决方案。
智能嗅探AJAX触发:机器学习在动态渲染中的创新应用
随着Web技术发展,动态加载数据的网站(如今日头条)对传统爬虫提出新挑战:初始HTML无完整数据、请求路径动态生成且易触发反爬策略。本文以爬取“AI”相关新闻为例,探讨了通过浏览器自动化、抓包分析和静态逆向接口等方法采集数据的局限性,并提出借助机器学习智能识别AJAX触发点的解决方案。通过特征提取与模型训练,爬虫可自动推测数据接口路径并高效采集。代码实现展示了如何模拟AJAX请求获取新闻标题、简介、作者和时间,并分类存储。未来,智能化将成为采集技术的发展趋势。
智能嗅探AJAX触发:机器学习在动态渲染中的创新应用
云上玩转Qwen3系列之二:PAI-LangStudio搭建联网搜索和RAG增强问答应用
本文详细介绍了如何使用 PAI-LangStudio 和 Qwen3 构建基于 RAG 和联网搜索 的 AI 智能问答应用。该应用通过将 RAG、web search 等技术和阿里最新的推理模型 Qwen3 编排在一个应用流中,为大模型提供了额外的联网搜索和特定领域知识库检索的能力,提升了智能回答的效果,减少了幻觉。开发者可以基于该模板进行灵活扩展和二次开发,以满足特定场景的需求。
Serverless架构下的OSS应用:函数计算FC自动处理图片/视频转码(演示水印添加+缩略图生成流水线)
本文介绍基于阿里云函数计算(FC)和对象存储(OSS)构建Serverless媒体处理流水线,解决传统方案资源利用率低、运维复杂、成本高等问题。通过事件驱动机制实现图片水印添加、多规格缩略图生成及视频转码优化,支持毫秒级弹性伸缩与精确计费,提升处理效率并降低成本,适用于高并发媒体处理场景。
Serverless MCP 运行时业界首发,函数计算让 AI 应用最后一公里提速
作为云上托管 MCP 服务的最佳运行时,函数计算 FC 为阿里云百炼 MCP 提供弹性调用能力,用户只需提交 npx 命令即可“零改造”将开源 MCP Server 部署到云上,函数计算 FC 会准备好计算资源,并以弹性、可靠的方式运行 MCP 服务,按实际调用时长和次数计费,欢迎你在阿里云百炼和函数计算 FC 上体验 MCP 服务。
385 30
云大使 X 函数计算 FC 专属活动上线!享返佣,一键打造 AI 应用
如今,AI 技术已经成为推动业务创新和增长的重要力量。但对于许多企业和开发者来说,如何高效、便捷地部署和管理 AI 应用仍然是一个挑战。阿里云函数计算 FC 以其免运维的特点,大大降低了 AI 应用部署的复杂性。用户无需担心底层资源的管理和运维问题,可以专注于应用的创新和开发,并且用户可以通过一键部署功能,迅速将 AI 大模型部署到云端,实现快速上线和迭代。函数计算目前推出了多种规格的云资源优惠套餐,用户可以根据实际需求灵活选择。
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问