RT-DETR改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度

简介: RT-DETR改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度

一、本文介绍

本文记录的是利用ASF-YOLO提出的颈部结构优化RT-DETR的目标检测网络模型。将RT-DETR的颈部网络改进成ASF-YOLO的结构,==使模型能够有效的融合多尺度特征,捕获小目标精细信息,并根据注意力机制关注小目标相关特征,显著提高模型精度。==


专栏目录:RT-DETR改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
专栏地址:RT-DETR改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!

二、ASF-YOLO介绍

ASF-YOLO是一种基于YOLO的新颖框架,结合了空间和尺度特征以实现准确和快速的分割。其中,注意力尺度序列融合模块的设计包含以下几个关键方面:

2.1 出发点

  • 解决小目标分割挑战:细胞实例分割因细胞的小、密集、重叠以及边界模糊等特点,对分割精度要求高。传统基于CNN的方法及一些现有架构在处理此类小目标分割时存在不足,需要一种能更好融合多尺度特征并关注小目标相关信息的方法。
  • 优化YOLO架构:尽管YOLO系列在实时实例分割中具有优势,但对于医学图像中的小目标(如细胞)分割,其架构可进一步优化。通过设计注意尺度序列融合模块,提升模型对不同尺度小目标的处理能力和分割性能。

2.2 原理

2.2.1 多尺度特征融合

  • SSFF模块:通过对不同尺度的特征图(P3、P4、P5)进行归一化、上采样和堆叠,然后利用3D卷积将多尺度特征组合起来,从而能够在尺度空间表示中有效处理不同大小、方向和宽高比的目标,增强了模型对小目标尺度变化的鲁棒性。
  • TFE模块:将大、中、小三种不同尺寸的特征图在空间维度上拼接,以捕获不同尺度下小目标的精细空间信息,克服了FPN在YOLOv5中无法充分利用金字塔特征图相关性的局限。

    2.2.2 注意力机制

  • CPAM模块:整合SSFFTFE模块的特征信息,通过通道注意力网络和位置注意力网络,分别捕获与小目标相关的有信息通道和细化空间定位,使模型能够自适应地调整对不同尺度小目标相关通道和空间位置的关注,从而提高检测和分割精度。

2.3 结构

2.3.1 SSFF模块结构

  • 首先对P4和P5特征层进行1×1卷积,将通道数变为256,再使用最近邻插值法调整其大小与P3层相同。
  • 然后使用unsqueeze方法增加特征层维度,从3D张量变为4D张量,并沿深度维度将4D特征图拼接形成3D特征图。
  • 最后使用3D卷积、3D批归一化和SiLU激活函数完成尺度序列特征提取。

在这里插入图片描述

2.3.2 TFE模块结构

  • 对于大尺寸特征图(Large),经卷积模块处理后调整通道数为1C,然后采用最大池化+平均池化的混合结构进行下采样。
  • 对于小尺寸特征图(Small),卷积模块调整通道数后使用最近邻插值法进行上采样。
  • 最后将大、中、小三种尺寸相同的特征图在通道维度上拼接输出。

在这里插入图片描述

2.3.3 CPAM模块结构

  • 包含通道注意力网络和位置注意力网络。通道注意力网络接收TFE模块输出的特征图,采用无维度缩减的注意力机制,通过考虑每个通道及其k最近邻来捕获非线性跨通道交互。
  • 位置注意力网络接收通道注意力机制输出与SSFF模块输出叠加后的特征图,通过在水平和垂直轴上进行池化、卷积、分裂等操作,提取每个细胞的关键位置信息。

在这里插入图片描述

2.4 优势

  • 提高分割精度:通过SSFF模块有效融合多尺度特征,TFE模块捕获小目标精细信息,以及CPAM模块的注意力机制关注小目标相关特征,显著提高了细胞实例分割的精度,在DSB2018和BCC数据集上均取得了优于其他先进方法的结果。
  • 增强模型鲁棒性SSFF模块对多尺度特征的融合方式使模型对不同条件下细胞图像中小目标的尺度变化具有更强的鲁棒性。
  • 平衡精度与速度:在实现高精度分割的同时,保持了较快的推理速度,如在DSB2018数据集上达到了47.3 FPS的推理速度,满足实时处理的需求。

论文:https://arxiv.org/pdf/2312.06458
源码:https://github.com/mkang315/ASF-YOLO

三、实现代码及RT-DETR修改步骤

模块完整介绍、个人总结、实现代码、模块改进、二次创新以及各模型添加步骤参考如下地址:

https://blog.csdn.net/qq_42591591/article/details/143812247

目录
打赏
0
11
11
1
162
分享
相关文章
基于WOA鲸鱼优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB 2022a/2024b实现,采用WOA优化的BiLSTM算法进行序列预测。核心代码包含完整中文注释与操作视频,展示从参数优化到模型训练、预测的全流程。BiLSTM通过前向与后向LSTM结合,有效捕捉序列前后文信息,解决传统RNN梯度消失问题。WOA优化超参数(如学习率、隐藏层神经元数),提升模型性能,避免局部最优解。附有运行效果图预览,最终输出预测值与实际值对比,RMSE评估精度。适合研究时序数据分析与深度学习优化的开发者参考。
基于GA遗传优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本内容包含基于BiLSTM与遗传算法(GA)的算法介绍及实现。算法通过MATLAB2022a/2024b运行,核心为优化BiLSTM超参数(如学习率、神经元数量),提升预测性能。LSTM解决传统RNN梯度问题,捕捉长期依赖;BiLSTM双向处理序列,融合前文后文信息,适合全局信息任务。附完整代码(含注释)、操作视频及无水印运行效果预览,适用于股票预测等场景,精度优于单向LSTM。
RT-DETR改进策略【Neck】| BiFPN:双向特征金字塔网络-跨尺度连接和加权特征融合
RT-DETR改进策略【Neck】| BiFPN:双向特征金字塔网络-跨尺度连接和加权特征融合
362 9
RT-DETR改进策略【Neck】| BiFPN:双向特征金字塔网络-跨尺度连接和加权特征融合
基于PSO粒子群优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB2022a/2024b开发,结合粒子群优化(PSO)算法与双向长短期记忆网络(BiLSTM),用于优化序列预测任务中的模型参数。核心代码包含详细中文注释及操作视频,涵盖遗传算法优化过程、BiLSTM网络构建、训练及预测分析。通过PSO优化BiLSTM的超参数(如学习率、隐藏层神经元数等),显著提升模型捕捉长期依赖关系和上下文信息的能力,适用于气象、交通流量等场景。附有运行效果图预览,展示适应度值、RMSE变化及预测结果对比,验证方法有效性。
基于GWO灰狼优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于Matlab 2022a/2024b实现,结合灰狼优化(GWO)算法与双向长短期记忆网络(BiLSTM),用于序列预测任务。核心代码包含数据预处理、种群初始化、适应度计算及参数优化等步骤,完整版附带中文注释与操作视频。BiLSTM通过前向与后向处理捕捉序列上下文信息,GWO优化其参数以提升预测性能。效果图展示训练过程与预测结果,适用于气象、交通等领域。LSTM结构含输入门、遗忘门与输出门,解决传统RNN梯度问题,而BiLSTM进一步增强上下文理解能力。
基于模糊神经网络的金融序列预测算法matlab仿真
本程序为基于模糊神经网络的金融序列预测算法MATLAB仿真,适用于非线性、不确定性金融数据预测。通过MAD、RSI、KD等指标实现序列预测与收益分析,运行环境为MATLAB2022A,完整程序无水印。算法结合模糊逻辑与神经网络技术,包含输入层、模糊化层、规则层等结构,可有效处理金融市场中的复杂关系,助力投资者制定交易策略。
RT-DETR改进策略【Neck】| GFPN 超越BiFPN 通过跳层连接和跨尺度连接改进RT-DETR颈部网络
RT-DETR改进策略【Neck】| GFPN 超越BiFPN 通过跳层连接和跨尺度连接改进RT-DETR颈部网络
142 12
RT-DETR改进策略【Neck】| GFPN 超越BiFPN 通过跳层连接和跨尺度连接改进RT-DETR颈部网络
RT-DETR改进策略【Neck】| ECCV-2024 RCM 矩形自校准模块 优化颈部网络
RT-DETR改进策略【Neck】| ECCV-2024 RCM 矩形自校准模块 优化颈部网络
198 10
RT-DETR改进策略【Neck】| ECCV-2024 RCM 矩形自校准模块 优化颈部网络
|
5月前
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V3 2024华为的重参数轻量化模型
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V3 2024华为的重参数轻量化模型
161 2
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V3 2024华为的重参数轻量化模型
RT-DETR改进策略【Neck】| GSConv+Slim Neck:混合深度可分离卷积和标准卷积的轻量化网络设计
RT-DETR改进策略【Neck】| GSConv+Slim Neck:混合深度可分离卷积和标准卷积的轻量化网络设计
209 11

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问