Loading [MathJax]/jax/output/HTML-CSS/jax.js

RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络

简介: RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络

一、本文介绍

本文记录的是基于MobileNet V1的RT-DETR轻量化改进方法研究MobileNet V1基于深度可分离卷积构建,其设计旨在满足移动和嵌入式视觉应用对小型低延迟模型的需求,具有独特的模型收缩超参数来灵活调整模型大小与性能。本文将MobileNet V1应用到RT-DETR中,有望借助其高效的结构和特性,提升RT-DETR在计算资源有限环境下的性能表现,同时保持一定的精度水平。

模型 参数量 计算量
rtdetr-l 32.8M 108.0GFLOPs
Improved 22.0M 71.1GFLOPs

专栏目录:RT-DETR改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
专栏地址:RT-DETR改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!

二、MoblieNet V1设计原理

2.1 出发点

在许多实际应用如机器人、自动驾驶和增强现实中,识别任务需要在计算资源有限的平台上及时完成。但以往为提高准确性而构建的更深更复杂的网络,在尺寸和速度方面并不高效。因此,需要构建小型、低延迟的模型来满足移动和嵌入式视觉应用的设计要求。

2.2 结构原理

  • 深度可分离卷积(Depthwise Separable Convolution):这是MobileNet模型的核心构建模块。它将标准卷积分解为深度卷积(depthwise convolution)1×1卷积(pointwise convolution)
    • 对于MobileNet,深度卷积对每个输入通道应用单个滤波器,然后点卷积通过1×1卷积组合深度卷积的输出。标准卷积在一步中同时过滤和组合输入以生成新的输出,而深度可分离卷积将此过程分为两步,从而大幅降低了计算量和模型尺寸

      例如,一个标准卷积层输入为$D{F}×D{F}×MFD{F}×D{F}×NGD{K}·D{K}·M·N·D{F}·D{F}D{K}·D{K}·M·D{F}·D{F}+M·N·D{F}·D{F}$,相比之下计算量大幅减少,如在实际应用中 MobileNet 使用 3×3 深度可分离卷积比标准卷积节省 8 到 9 倍的计算量且精度损失较小。

  • 网络结构:除了第一层是全卷积外,MobileNet 结构基于深度可分离卷积构建。所有层(除最终全连接层)后面都跟着批量归一化(batchnorm)ReLU 非线性激活函数。下采样通过深度卷积中的步长卷积以及第一层来处理,最后在全连接层之前使用平均池化将空间分辨率降为 1。
    • 将深度卷积和点卷积视为单独的层,MobileNet 共有 28 层。在计算资源分配上,95%的计算时间花费在 1x1 卷积上,且 75%的参数也在 1x1 卷积中,几乎所有额外参数都在全连接层。

在这里插入图片描述

  • 模型收缩超参数:包括宽度乘数(width multiplier)和分辨率乘数(resolution multiplier)。宽度乘数α用于均匀地使网络每层变窄,对于给定层和宽度乘数α,输入通道数M变为αM,输出通道数N变为αN,其计算成本为$D{K}·D{K}·\alpha M·D{F}·D{F}+\alpha M·\alpha N·D{F}·D{F}\alpha^{2}\rhoD{K}\cdot D{K}\cdot \alpha M\cdot \rho D{F}\cdot \rho D{F}+\alpha M\cdot \alpha N\cdot \rho D{F}\cdot \rho D{F}使\rho^{2}$。

2.3 优势

  • 计算效率高:通过深度可分离卷积以及模型收缩超参数的应用,在保证一定精度的前提下,大幅减少了计算量和模型参数。
    • 灵活性强:宽度乘数和分辨率乘数可以根据不同的应用需求和资源限制,灵活地调整模型的大小、计算成本和精度,以实现合理的权衡。

论文:https://arxiv.org/pdf/1704.04861
源码:https://github.com/Zehaos/MobileNet

三、实现代码及RT-DETR修改步骤

模块完整介绍、个人总结、实现代码、模块改进、二次创新以及各模型添加步骤参考如下地址:

https://blog.csdn.net/qq_42591591/article/details/145255024

相关文章
计算机网络TCP/IP四层模型
本文介绍了TCP/IP模型的四层结构及其与OSI模型的对比。网络接口层负责物理网络接口,处理MAC地址和帧传输;网络层管理IP地址和路由选择,确保数据包准确送达;传输层提供端到端通信,支持可靠(TCP)或不可靠(UDP)传输;应用层直接面向用户,提供如HTTP、FTP等服务。此外,还详细描述了数据封装与解封装过程,以及两模型在层次划分上的差异。
115 11
计算机网络OSI七层模型
OSI模型分为七层,各层功能明确:物理层传输比特流,数据链路层负责帧传输,网络层处理数据包路由,传输层确保端到端可靠传输,会话层管理会话,表示层负责数据格式转换与加密,应用层提供网络服务。数据在传输中经过封装与解封装过程。OSI模型优点包括标准化、模块化和互操作性,但也存在复杂性高、效率较低及实用性不足的问题,在实际中TCP/IP模型更常用。
85 10
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV2,含模型详解和完整配置步骤
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV2,含模型详解和完整配置步骤
98 1
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV2,含模型详解和完整配置步骤
|
3月前
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V3 2024华为的重参数轻量化模型
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V3 2024华为的重参数轻量化模型
96 2
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V3 2024华为的重参数轻量化模型
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
133 17
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
103 10
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的内容,并提供一些实用的代码示例。通过阅读本文,您将了解到如何保护自己的网络安全,以及如何提高自己的信息安全意识。
125 10
网络安全与信息安全:漏洞、加密与意识的交织
在数字时代的浪潮中,网络安全与信息安全成为维护数据完整性、保密性和可用性的关键。本文深入探讨了网络安全中的漏洞概念、加密技术的应用以及提升安全意识的重要性。通过实际案例分析,揭示了网络攻击的常见模式和防御策略,强调了教育和技术并重的安全理念。旨在为读者提供一套全面的网络安全知识框架,从而在日益复杂的网络环境中保护个人和组织的资产安全。
云计算与网络安全:云服务、网络安全、信息安全等技术领域的融合与挑战
本文将探讨云计算与网络安全之间的关系,以及它们在云服务、网络安全和信息安全等技术领域中的融合与挑战。我们将分析云计算的优势和风险,以及如何通过网络安全措施来保护数据和应用程序。我们还将讨论如何确保云服务的可用性和可靠性,以及如何处理网络攻击和数据泄露等问题。最后,我们将提供一些关于如何在云计算环境中实现网络安全的建议和最佳实践。

热门文章

最新文章