简介: 中文摘要应简明扼要地概括学位论文的核心内容,包括研究目的、意义、方法、成果与结论,突出创新性成果和新见解。摘要不应使用公式、化学结构式、图表及非通用符号,不标注引用文献。硕士学位论文摘要约500字,博士学位论文摘要约800字,英文摘要内容需与中文摘要一致。

中文摘要应该将学位论文的内容要点简短明了地表达出来,应该包含论文中的基本信息,
体现科研工作的核心思想。摘要内容应涉及本项科研工作的目的和意义、研究方法、研究
成果、结论及意义。注意突出学位论文中具有创新性的成果和新见解的部分。摘要中不宜
使用公式、化学结构式、图表和非公知公用的符号和术语,不标注引用文献编号。硕士学
位论文中文摘要字数为 500 字左右,博士学位论文中文摘要字数为 800 字左右。英文摘
要内容应与中文摘要内容一致

相关文章
|
8月前
|
人工智能 JavaScript 测试技术
通义灵码 2.0 体验报告:AI 赋能智能研发的新范式
通义灵码 2.0 是阿里云基于通义大模型推出的先进开发工具,具备代码智能生成、研发问答、多文件修改和自主执行等核心功能。本文通过亲身体验,展示了其在新功能开发、跨语言编程和单元测试生成等方面的实际效果,并对比了 1.0 版本的改进。结果显示,2.0 版在代码生成完整度、跨语言支持和单元测试自动化上有显著提升,极大提高了开发效率,但仍需进一步优化安全性和个性化风格。推荐指数:⭐⭐⭐⭐⭐。
|
8月前
|
人工智能 JavaScript 测试技术
通义灵码 2.0 体验报告:AI 赋能智能研发的新范式
**通义灵码 2.0 体验报告:AI 赋能智能研发的新范式** 本文详细评测了阿里云推出的通义灵码 2.0,基于通义大模型,提供代码智能生成、研发问答、多文件修改等核心能力。通过亲身体验,探讨其在新功能开发、跨语言编程、单元测试生成等场景的实际效果,并对比1.0版本的改进点。结果显示,2.0版本在代码生成完整性、自动化程度及跨语言支持方面有显著提升,但也存在安全性优化和个性化风格调整的空间。推荐指数:⭐⭐⭐⭐⭐。 (239字)
|
8月前
|
人工智能
用好Deepseek
构建高效提问体系,让deepseek成为你的智商增量。通过高维提问,解锁其隐藏潜力,不再只是搬运答案。细节与认知厚度决定反馈质量,使用STAR法则(情景、任务、行动、结果)优化提问,AI不仅能提供答案,更能帮你搭建完整解决方案,提升认知水平。
|
7月前
|
SQL 人工智能 自然语言处理
颠覆传统BI认知:Quick BI如何用“傻瓜式”操作重塑数据决策?
Quick BI是阿里云推出的一款零代码+AI数据分析工具,专为业务人员设计。通过简洁的界面和强大的功能,它让数据“开口说话”。从Excel秒变智能资产,到拖拽式构建高定看板,再到自然语言查询与预测分析,菜鸟也能轻松上手。企业微信集成、移动端优化等功能,助力实时决策。Quick BI打破技术壁垒,推动数据民主化,让每个岗位都能用业务语言对话数据,实现真正的数据驱动转型。
|
8月前
|
机器学习/深度学习 自然语言处理 API
阿里云 DeepSeek-R1 满血版解决方案评测
阿里云的 **DeepSeek-R1 满血版** 是一款基于深度学习的推理模型,专为数学、代码和自然语言处理等复杂任务设计。它在少量标注数据下显著提升推理能力,支持快速部署,操作简便。用户可通过阿里云平台轻松调用 API,无需编程技能,几分钟内完成配置。该解决方案提供高效推理、灵活部署和低成本起步的优势,特别适合初创企业和技术团队使用。评测显示其推理结果精准、响应迅速且易于集成,性价比高,是提升推理能力的理想选择。
|
8月前
|
机器学习/深度学习 人工智能 边缘计算
联邦
随着人工智能的发展,联邦学习在打破“数据孤岛”和保护隐私方面展现出巨大潜力,但也面临诸多安全挑战。本文总结了五个关键研究方向:1. 提高防御方法的鲁棒性,以应对多种攻击;2. 研究更多样化的攻击手段,促进防御进步;3. 提升通信效率,平衡安全与性能;4. 探索异构联邦学习,拓展应用场景;5. 增强模型可解释性,确保应用安全。未来需深入研究这些方向,推动联邦学习成为数据安全领域的关键技术。
|
8月前
|
机器学习/深度学习 算法 安全
Federated Learning
联邦学习(Federated Learning, FL)是一种新兴的分布式机器学习范式,旨在通过“数据不动模型动”的方式,在不共享原始数据的情况下实现多方协同训练,保护数据隐私。本文综述了国内外研究现状,涵盖学术研究和产业应用进展,分析了其核心特征、技术挑战及未来发展方向,为相关领域的研究者和从业者提供参考。
|
8月前
|
安全
联邦学习潜在威胁
本文将联邦学习中的潜在威胁分为安全威胁和隐私威胁。安全威胁如数据投毒、女巫攻击等,影响完整性和可用性;隐私威胁如样本隐私泄露、模型提取攻击等,破坏机密性。不同阶段面临不同威胁:数据收集阶段有数据投毒、隐私泄露;训练阶段有模型投毒、推理攻击;推理阶段有对抗样本、模型提取攻击。
|
8月前
|
人工智能 弹性计算 自然语言处理
《AI剧本生成与动画创作》解决方案深度测评报告
该解决方案基于阿里云函数计算(FC)和百炼大模型平台,结合图像生成模型与语音合成技术,实现从剧本生成到动画渲染的自动化流程。核心步骤包括剧本生成、分镜设计和动画渲染,支持模块化扩展和低成本弹性伸缩。部署耗时约80分钟,首次部署需下载大模型文件。优势在于高效生成动画、低成本试错和丰富的动态效果,但也存在剧本逻辑跳跃、画面细节瑕疵等问题。综合评分为4/5,适用于短视频营销等场景。
|
8月前
|
机器学习/深度学习 资源调度 算法
半监督学习
半监督学习(SSL)结合少量标注数据和大量未标注数据,提升模型性能。经典方法包括自训练、协同训练和生成式方法;深度学习时代则涌现了一致性正则化、对比学习增强和基于图的SSL等技术。前沿突破涵盖扩散模型和大语言模型驱动的SSL。当前面临理论与工程挑战,未来探索方向包括量子SSL和神经符号融合。最新性能评估显示,在多个数据集上SSL方法显著优于传统全监督学习。