YOLOv11改进策略【模型轻量化】| 替换骨干网络为 2024轻量化网络MoblieNetV4:移动生态系统的通用模型

简介: YOLOv11改进策略【模型轻量化】| 替换骨干网络为 2024轻量化网络MoblieNetV4:移动生态系统的通用模型

一、本文介绍

本文记录的是基于MobileNet V4的YOLOv11目标检测轻量化改进方法研究MobileNet V4通过整合UIBMobile MQA以及优化的NAS策略能够在在不降低性能指标的前提下,降低计算成本。本文配置了原论文中MNv4-Conv-SMNv4-Conv-MMNv4-Conv-LMNv4-Hybrid-MMNv4-Hybrid-L五种模型,以满足不同的需求。

模型 参数量 计算量 推理速度
YOLOv11m 20.0M 67.6GFLOPs 3.5ms
Improved 13.0M 30.4GFLOPs 2.2ms

专栏目录:YOLOv11改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
专栏地址:YOLOv11改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!

二、MoblieNet V4设计原理

MobileNetV4: Universal Models for the Mobile Ecosystem

MobileNetV4是一系列适用于移动生态系统的通用高效模型。以下将详细介绍其轻量化设计的出发点、原理、结构和优势:

2.1 设计出发点

  • 平衡精度与效率:移动设备的计算资源有限,需要在保证模型精度的同时提高计算效率,以实现快速、实时和交互式的应用体验,同时避免通过公共网络传输私人数据。
  • 硬件通用性:针对不同的移动硬件平台(如CPUs、DSPs、GPUs以及各种加速器),设计出在性能上普遍高效的模型,使其能在各种设备上都能良好运行。

2.2 设计原理

  1. 基于Roofline模型的分析
    • 理解硬件瓶颈:Roofline模型通过分析模型的运算强度(LayerMACsi/(WeightBytesi + ActivationBytesi))与硬件的处理器和内存系统的理论极限,来确定模型在不同硬件上是受内存带宽还是计算能力的限制。
    • 优化策略:根据不同硬件的特点(如低RP硬件上减少MACs以提高速度,高RP硬件上利用数据移动瓶颈小的特点增加模型容量),设计模型结构,使MobileNetV4在从0到500 MACs/byte的RP范围内都能达到接近Pareto最优的性能。
  2. 注意力机制优化
    • 考虑运算强度:由于加速器的计算能力大幅提高但内存带宽增长不成比例,所以在设计注意力机制时考虑运算强度,即算术运算与内存访问的比率。
    • MQA机制Mobile MQA通过共享键和值来减少内存带宽需求,提高运算强度,同时还采用了如不对称空间下采样等策略进一步提高效率。

2.3 结构

2.3.1 通用倒置瓶颈(UIB)模块

  • 结构特点UIB模块是一种统一且灵活的结构,它扩展了MobileNet的倒置瓶颈(IB)模块,在扩展层之前和扩展与投影层之间引入了可选的深度可分离卷积(DW)。它可以统一Inverted Bottleneck (IB)、ConvNext、Feed Forward Network (FFN)以及一种新的Extra Depthwise (ExtraDW)变体。
  • 模块实例化UIB模块中的两个可选深度卷积有四种可能的实例化方式,分别对应不同的权衡。例如,ExtraDW可以增加网络深度和感受野,结合了ConvNext-Like和IB的优点。

在这里插入图片描述

2.3.2 Mobile MQA模块

  • 基础结构:是一种基于注意力机制的模块,它简化了多头注意力(MHSA)机制,==通过共享键和值来减少内存带宽需求。==
    • 优化结构:进一步采用不对称空间下采样(SRA),在优化后的MQA块中对关键和价值分辨率进行下采样,同时保留高分辨率查询,提高了模型效率。

2.4 优势

  1. 性能优势
    • Pareto最优:通过整合UIBMobile MQA以及优化的NAS策略,MobileNetV4模型在移动CPUs、DSPs、GPUs以及各种加速器上大多达到了Pareto最优性能,即在不降低其他性能指标的情况下,某一性能指标无法进一步提升。
    • 跨硬件一致性:在不同硬件平台上表现出较为一致的性能,这是其他测试模型所不具备的。例如,在ImageNet - 1K分类任务中,MNv4 - Conv - M比MobileOne - S4和Fast ViT - S12快50%以上,且在可比延迟下比MobileNetV2的Top - 1准确率高1.5%。
  2. 效率优势
    • 计算效率UIB模块提供了空间通道混合的灵活性,可选择扩展感受野,增强了计算效率。例如,ExtraDW变体可以在不显著增加计算成本的情况下增加网络深度和感受野。
    • 推理速度Mobile MQA模块在移动加速器上实现了超过39%的推理速度提升,大大提高了模型的运行效率。
  3. 模型构建优势
    • NAS优化:采用了优化的神经网络架构搜索(NAS)策略,包括两阶段搜索(粗粒度搜索和细粒度搜索)以及使用离线蒸馏数据集,提高了搜索效率和模型质量,能够创建出比以前的先进模型更大的模型。
    • 蒸馏技术:引入了一种新的蒸馏技术,通过动态混合不同增强策略的数据集以及添加平衡的类内数据,进一步提高了模型的准确性和泛化能力。例如,MNv4 - Hybrid - Large模型在ImageNet - 1K上的准确率达到87%,同时在Pixel 8 EdgeTPU上的运行时间仅为3.8ms。

论文:https://arxiv.org/pdf/2404.10518
源码:https://github.com/tensorflow/models/blob/master/official/vision/modeling/backbones/mobilenet.py

三、实现代码及YOLOv11修改步骤

模块完整介绍、个人总结、实现代码、模块改进、二次创新以及各模型添加步骤参考如下地址:

https://blog.csdn.net/qq_42591591/article/details/143068696

目录
打赏
0
7
8
1
160
分享
相关文章
RT-DETR改进策略【Neck】| BiFPN:双向特征金字塔网络-跨尺度连接和加权特征融合
RT-DETR改进策略【Neck】| BiFPN:双向特征金字塔网络-跨尺度连接和加权特征融合
77 9
RT-DETR改进策略【Neck】| BiFPN:双向特征金字塔网络-跨尺度连接和加权特征融合
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(slug)", "蜗牛(snail)", "黄蜂(wasp)", "象鼻虫(weevil)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Djan
43 1
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
基于ssm的网络直播带货管理系统,附源码+数据库+论文
该项目为网络直播带货网站,包含管理员和用户两个角色。管理员可进行主页、个人中心、用户管理、商品分类与信息管理、系统及订单管理;用户可浏览主页、管理个人中心、收藏和订单。系统基于Java开发,采用B/S架构,前端使用Vue、JSP等技术,后端为SSM框架,数据库为MySQL。项目运行环境为Windows,支持JDK8、Tomcat8.5。提供演示视频和详细文档截图。
37 10
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
96 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
RT-DETR改进策略【Neck】| ECCV-2024 RCM 矩形自校准模块 优化颈部网络
RT-DETR改进策略【Neck】| ECCV-2024 RCM 矩形自校准模块 优化颈部网络
68 10
RT-DETR改进策略【Neck】| ECCV-2024 RCM 矩形自校准模块 优化颈部网络
RT-DETR改进策略【Neck】| GSConv+Slim Neck:混合深度可分离卷积和标准卷积的轻量化网络设计
RT-DETR改进策略【Neck】| GSConv+Slim Neck:混合深度可分离卷积和标准卷积的轻量化网络设计
63 11
优质网络舆情监测系统大盘点
一款出色的网络舆情监测系统,不仅能够助力相关主体迅速捕捉舆情信息,有效应对危机,还能够助力其更好地把握舆论动态,维护自身形象。那么,市场上有哪些比较好的网络舆情监测系统呢?这里,本文有为各位整理了一些好用的舆情检测系统,以供各位参考!
35 0
Golang 实现轻量、快速的基于 Reactor 模式的非阻塞 TCP 网络库
gev 是一个基于 epoll 和 kqueue 实现的高性能事件循环库,适用于 Linux 和 macOS(Windows 暂不支持)。它支持多核多线程、动态扩容的 Ring Buffer 读写缓冲区、异步读写和 SO_REUSEPORT 端口重用。gev 使用少量 goroutine,监听连接并处理读写事件。性能测试显示其在不同配置下表现优异。安装命令:`go get -u github.com/Allenxuxu/gev`。
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
96 17

热门文章

最新文章