SpringBoot 通过集成 Flink CDC 来实时追踪 MySql 数据变动

本文涉及的产品
RDS AI 助手,专业版
RDS MySQL DuckDB 分析主实例,集群系列 4核8GB
简介: 通过详细的步骤和示例代码,您可以在 SpringBoot 项目中成功集成 Flink CDC,并实时追踪 MySQL 数据库的变动。

SpringBoot 集成 Flink CDC 实时追踪 MySQL 数据变动

一、概述

Flink CDC 是一个基于 Apache Flink 的数据捕获工具,能够实时捕获和处理数据库的变动事件。通过集成 Flink CDC,可以实时追踪 MySQL 数据库中的数据变动,构建高效的数据处理和分析应用。本文将介绍如何在 SpringBoot 项目中集成 Flink CDC,并实现对 MySQL 数据变动的实时追踪。

二、准备工作

1. 环境准备

  • JDK 1.8+
  • Maven 3.6+
  • MySQL 数据库
  • Apache Flink 1.12+
  • SpringBoot 2.5+

2. 创建 MySQL 数据库和表

CREATE DATABASE test_db;

USE test_db;

CREATE TABLE users (
    id INT AUTO_INCREMENT PRIMARY KEY,
    name VARCHAR(255) NOT NULL,
    email VARCHAR(255) NOT NULL,
    created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);
​

三、集成步骤

1. 引入依赖

在 SpringBoot 项目的 pom.xml 中添加必要的依赖:

<dependencies>
    <!-- Spring Boot Dependencies -->
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter</artifactId>
    </dependency>
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-data-jpa</artifactId>
    </dependency>

    <!-- Flink Dependencies -->
    <dependency>
        <groupId>org.apache.flink</groupId>
        <artifactId>flink-java</artifactId>
        <version>1.12.0</version>
    </dependency>
    <dependency>
        <groupId>org.apache.flink</groupId>
        <artifactId>flink-streaming-java_2.12</artifactId>
        <version>1.12.0</version>
    </dependency>

    <!-- Flink CDC Dependencies -->
    <dependency>
        <groupId>com.ververica</groupId>
        <artifactId>flink-connector-mysql-cdc</artifactId>
        <version>2.0.0</version>
    </dependency>
</dependencies>
​

2. 配置 Flink CDC

在 SpringBoot 项目中创建 Flink CDC 配置类:

import com.ververica.cdc.connectors.mysql.MySQLSource;
import com.ververica.cdc.connectors.mysql.table.StartupOptions;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

@Configuration
public class FlinkCdcConfig {

    @Bean
    public DataStreamSource<String> mysqlSource(StreamExecutionEnvironment env) {
        MySQLSource<String> source = MySQLSource.<String>builder()
            .hostname("localhost")
            .port(3306)
            .databaseList("test_db")
            .tableList("test_db.users")
            .username("root")
            .password("password")
            .deserializer(new JsonDebeziumDeserializationSchema())
            .startupOptions(StartupOptions.initial())
            .build();

        return env.fromSource(source, WatermarkStrategy.noWatermarks(), "MySQL Source");
    }
}
​

3. 创建 Flink 作业

在 SpringBoot 项目中创建 Flink 作业:

import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.springframework.boot.CommandLineRunner;
import org.springframework.stereotype.Component;

@Component
public class FlinkJobRunner implements CommandLineRunner {

    private final StreamExecutionEnvironment env;
    private final DataStreamSource<String> mysqlSource;

    public FlinkJobRunner(StreamExecutionEnvironment env, DataStreamSource<String> mysqlSource) {
        this.env = env;
        this.mysqlSource = mysqlSource;
    }

    @Override
    public void run(String... args) throws Exception {
        mysqlSource.print();
        env.execute("Flink CDC Job");
    }
}
​

4. 启动 SpringBoot 应用

运行 SpringBoot 应用,启动后会自动执行 Flink 作业,并打印 MySQL 数据库中 users 表的变动。

四、验证和测试

1. 插入测试数据

向 MySQL 数据库中插入数据:

INSERT INTO users (name, email) VALUES ('Alice', 'alice@example.com');
INSERT INTO users (name, email) VALUES ('Bob', 'bob@example.com');
​

2. 验证输出

查看 SpringBoot 应用的控制台输出,确认是否正确捕获并打印了 MySQL 数据库中的变动。

五、总结

通过以上步骤,我们在 SpringBoot 项目中集成了 Flink CDC,实现了对 MySQL 数据变动的实时追踪。这种方法可以用于构建高效的实时数据处理和分析系统,适用于各种需要数据实时同步和处理的场景。

思维导图

- SpringBoot 集成 Flink CDC 实时追踪 MySQL 数据变动
  - 准备工作
    - 环境准备
    - 创建 MySQL 数据库和表
  - 集成步骤
    - 引入依赖
    - 配置 Flink CDC
    - 创建 Flink 作业
    - 启动 SpringBoot 应用
  - 验证和测试
    - 插入测试数据
    - 验证输出
  - 总结
​

通过详细的步骤和示例代码,您可以在 SpringBoot 项目中成功集成 Flink CDC,并实时追踪 MySQL 数据库的变动。

相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。 &nbsp; 相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情:&nbsp;https://www.aliyun.com/product/rds/mysql&nbsp;
目录
相关文章
|
5月前
|
SQL 人工智能 JSON
Flink 2.1 SQL:解锁实时数据与AI集成,实现可扩展流处理
简介:本文整理自阿里云高级技术专家李麟在Flink Forward Asia 2025新加坡站的分享,介绍了Flink 2.1 SQL在实时数据处理与AI融合方面的关键进展,包括AI函数集成、Join优化及未来发展方向,助力构建高效实时AI管道。
927 43
|
5月前
|
SQL 人工智能 JSON
Flink 2.1 SQL:解锁实时数据与AI集成,实现可扩展流处理
本文整理自阿里云的高级技术专家、Apache Flink PMC 成员李麟老师在 Flink Forward Asia 2025 新加坡[1]站 —— 实时 AI 专场中的分享。将带来关于 Flink 2.1 版本中 SQL 在实时数据处理和 AI 方面进展的话题。
390 0
Flink 2.1 SQL:解锁实时数据与AI集成,实现可扩展流处理
|
5月前
|
SQL 关系型数据库 Apache
从 Flink 到 Doris 的实时数据写入实践 —— 基于 Flink CDC 构建更实时高效的数据集成链路
本文将深入解析 Flink-Doris-Connector 三大典型场景中的设计与实现,并结合 Flink CDC 详细介绍了整库同步的解决方案,助力构建更加高效、稳定的实时数据处理体系。
2475 0
从 Flink 到 Doris 的实时数据写入实践 —— 基于 Flink CDC 构建更实时高效的数据集成链路
|
6月前
|
JSON 分布式计算 大数据
springboot项目集成大数据第三方dolphinscheduler调度器
springboot项目集成大数据第三方dolphinscheduler调度器
419 3
|
6月前
|
JSON Java 数据格式
Spring Boot返回Json数据及数据封装
在Spring Boot中,接口间及前后端的数据传输通常使用JSON格式。通过@RestController注解,可轻松实现Controller返回JSON数据。该注解是Spring Boot新增的组合注解,结合了@Controller和@ResponseBody的功能,默认将返回值转换为JSON格式。Spring Boot底层默认采用Jackson作为JSON解析框架,并通过spring-boot-starter-json依赖集成了相关库,包括jackson-databind、jackson-datatype-jdk8等常用模块,简化了开发者对依赖的手动管理。
687 3
|
6月前
|
缓存 JSON 前端开发
第07课:Spring Boot集成Thymeleaf模板引擎
第07课:Spring Boot集成Thymeleaf模板引擎
652 0
第07课:Spring Boot集成Thymeleaf模板引擎
|
分布式计算 大数据 Java
springboot项目集成大数据第三方dolphinscheduler调度器 执行/停止任务
springboot项目集成大数据第三方dolphinscheduler调度器 执行/停止任务
159 0
|
6月前
|
存储 人工智能 Java
Springboot集成AI Springboot3 集成阿里云百炼大模型CosyVoice2 实现Ai克隆语音(未持久化存储)
本项目基于Spring Boot 3.5.3与Java 17,集成阿里云百炼大模型CosyVoice2实现音色克隆与语音合成。内容涵盖项目搭建、音色创建、音频合成、音色管理等功能,适用于希望快速掌握Spring Boot集成语音AI技术的开发者。需提前注册阿里云并获取API Key。
|
SQL Oracle 关系型数据库
Flink CDC 系列 - 同步 MySQL 分库分表,构建 Iceberg 实时数据湖
本篇教程将展示如何使用 Flink CDC 构建实时数据湖,并处理分库分表合并同步的场景。
Flink CDC 系列 - 同步 MySQL 分库分表,构建 Iceberg 实时数据湖

推荐镜像

更多