SpeechGPT 2.0:复旦大学开源端到端 AI 实时语音交互模型,实现 200ms 以内延迟的实时交互

简介: SpeechGPT 2.0 是复旦大学 OpenMOSS 团队推出的端到端实时语音交互模型,具备拟人口语化表达、低延迟响应和多情感控制等功能。

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日分享大模型与 AI 领域的最新开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


🚀 快速阅读

  1. 概述:SpeechGPT 2.0 是复旦大学 OpenMOSS 团队推出的端到端实时语音交互模型,基于百万小时级中文语音数据训练,支持情感控制和低延迟响应。
  2. 主要功能:具备拟人口语化表达、多情感控制、实时打断交互和多种语音才艺。
  3. 技术原理:采用超低比特率流式语音 Codec 和语义-声学联合建模,实现高效的语音文本混合建模。

SpeechGPT 2.0 是什么

SpeechGPT 2.0

SpeechGPT 2.0 是复旦大学 OpenMOSS 团队推出的一款拟人化实时交互系统。该模型基于百万小时级的中文语音数据进行训练,采用端到端架构,实现了语音与文本模态的高度融合。它具有拟人口语化表达、百毫秒级低延迟响应,支持自然流畅的实时打断交互。此外,SpeechGPT 2.0 能够精准控制语速、情感、风格和音色,实现智能切换,并具备多种语音才艺,如诗歌朗诵、故事讲述、说方言等。

SpeechGPT 2.0 的主要功能

  • 情感与风格控制:支持多情感(如虚弱、欢快)、多音色(男女切换)及多风格(诗歌朗诵、方言模仿)的精准控制,角色扮演能力突出。
  • 实时打断交互:百毫秒级响应速度支持自然对话中的即时打断与续接。
  • 文本能力集成:在语音表现力基础上,保留文本模型的智商,支持工具调用、联网搜索、外挂知识库接入等功能。
  • 多任务兼容性:可处理长文档解析、多轮对话等场景,兼容短文本任务的性能未因长上下文能力而降低。

SpeechGPT 2.0 的技术原理

  • 超低比特率流式语音 Codec:自研的超低比特率流式语音 Codec,能够处理 24khz 的语音输入,将语音压缩至每秒 75 个 token,支持流式输入输出,实现 200ms 以内延迟的实时交互。
  • 语义-声学联合建模:通过语义-声学联合建模,直接处理语音输入并生成语音或文本输出,无需传统级联式 ASR(语音识别)和 TTS(语音合成)模块。
  • Codec Patchify:通过 Codec Patchify 技术聚合相邻时间步的语音 token 为统一向量,有效减小语音和文本序列之间的模态差异,缓解跨模态建模中的冲突问题。
  • 多阶段训练流程:包括模态适应预训练、跨模态指令微调和链式模态微调,兼顾文本能力与语音能力,避免模型在学习语音能力时降低智商。
  • 语音文本对齐预训练:通过充分的语音文本对齐预训练,模型可以“涌现”出语音风格的泛化性,例如无需语速调整数据即可控制语速,或模仿未见过的角色语气风格。

如何运行 SpeechGPT 2.0

1. 克隆仓库

git clone https://github.com/OpenMOSS/SpeechGPT-2.0-preview.git
cd SpeechGPT-2.0-preview

2. 下载模型权重

# 需要安装 git-lfs
git lfs install
git clone https://huggingface.co/fnlp/SpeechGPT-2.0-preview-Codec
git clone https://huggingface.co/fnlp/SpeechGPT-2.0-preview-7B

3. 准备环境

pip3 install -r requirements.txt
pip3 install flash-attn==2.7.3 --no-build-isolation

4. 启动网页 demo

python3 demo_gradio.py --codec_ckpt_path SpeechGPT-2.0-preview-Codec/sg2_codec_ckpt.pkl --model_path SpeechGPT-2.0-preview-7B/

SpeechGPT-2.0-preview Gradio

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日分享大模型与 AI 领域的最新开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

相关实践学习
达摩院智能语音交互 - 声纹识别技术
声纹识别是基于每个发音人的发音器官构造不同,识别当前发音人的身份。按照任务具体分为两种: 声纹辨认:从说话人集合中判别出测试语音所属的说话人,为多选一的问题 声纹确认:判断测试语音是否由目标说话人所说,是二选一的问题(是或者不是) 按照应用具体分为两种: 文本相关:要求使用者重复指定的话语,通常包含与训练信息相同的文本(精度较高,适合当前应用模式) 文本无关:对使用者发音内容和语言没有要求,受信道环境影响比较大,精度不高 本课程主要介绍声纹识别的原型技术、系统架构及应用案例等。 讲师介绍: 郑斯奇,达摩院算法专家,毕业于美国哈佛大学,研究方向包括声纹识别、性别、年龄、语种识别等。致力于推动端侧声纹与个性化技术的研究和大规模应用。
相关文章
|
4月前
|
云安全 人工智能 自然语言处理
阿里云x硅基流动:AI安全护栏助力构建可信模型生态
阿里云AI安全护栏:大模型的“智能过滤系统”。
2023 120
|
4月前
|
人工智能 中间件 数据库
沐曦 GPU 融入龙蜥,共筑开源 AI 基础设施新底座
沐曦自加入社区以来,一直与龙蜥社区在推动 AIDC OS 的开源社区建设等方面保持合作。
|
4月前
|
人工智能 运维 Java
Spring AI Alibaba Admin 开源!以数据为中心的 Agent 开发平台
Spring AI Alibaba Admin 正式发布!一站式实现 Prompt 管理、动态热更新、评测集构建、自动化评估与全链路可观测,助力企业高效构建可信赖的 AI Agent 应用。开源共建,现已上线!
5451 81
|
4月前
|
人工智能 搜索推荐 程序员
当AI学会“跨界思考”:多模态模型如何重塑人工智能
当AI学会“跨界思考”:多模态模型如何重塑人工智能
399 120
|
人工智能 自然语言处理 前端开发
产品经理也能“开发”需求?淘宝信息流从需求到上线的AI端到端实践
淘宝推荐信息流业务,常年被“需求多、技术栈杂、协作慢”困扰,需求上线周期动辄一周。WaterFlow——一套 AI 驱动的端到端开发新实践,让部分需求两天内上线,甚至产品经理也能“自产自销”需求。短短数月,已落地 30+ 需求、自动生成 5.4 万行代码,大幅提升研发效率。接下来,我们将揭秘它是如何落地并改变协作模式的。
601 37
产品经理也能“开发”需求?淘宝信息流从需求到上线的AI端到端实践
|
4月前
|
人工智能 自然语言处理 Shell
我们开源了一款 AI 驱动的用户社区
KoalaQA 是一款开源的 AI 驱动用户社区,支持智能问答、语义搜索、自动运营与辅助创作,助力企业降低客服成本,提升响应效率与用户体验。一键部署,灵活接入大模型,快速构建专属售后服务社区。
433 5
我们开源了一款 AI 驱动的用户社区
|
4月前
|
人工智能 搜索推荐 UED
一个牛逼的国产AI自动化工具,开源了 !
AiPy是国产开源AI工具,结合大语言模型与Python,支持本地部署。用户只需用自然语言描述需求,即可自动生成并执行代码,轻松实现数据分析、清洗、可视化等任务,零基础也能玩转编程,被誉为程序员的智能助手。
|
4月前
|
消息中间件 人工智能 安全
云原生进化论:加速构建 AI 应用
本文将和大家分享过去一年在支持企业构建 AI 应用过程的一些实践和思考。
1000 50
|
4月前
|
人工智能 运维 Kubernetes
Serverless 应用引擎 SAE:为传统应用托底,为 AI 创新加速
在容器技术持续演进与 AI 全面爆发的当下,企业既要稳健托管传统业务,又要高效落地 AI 创新,如何在复杂的基础设施与频繁的版本变化中保持敏捷、稳定与低成本,成了所有技术团队的共同挑战。阿里云 Serverless 应用引擎(SAE)正是为应对这一时代挑战而生的破局者,SAE 以“免运维、强稳定、极致降本”为核心,通过一站式的应用级托管能力,同时支撑传统应用与 AI 应用,让企业把更多精力投入到业务创新。
583 30

热门文章

最新文章

相关产品

  • 智能语音交互