moonshot-v1-vision-preview:月之暗面Kimi推出多模态视觉理解模型,支持图像识别、OCR文字识别、数据提取

简介: moonshot-v1-vision-preview 是月之暗面推出的多模态图片理解模型,具备强大的图像识别、OCR文字识别和数据提取能力,支持API调用,适用于多种应用场景。

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日分享大模型与 AI 领域的最新开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


🚀 快速阅读

  1. 功能:支持图像识别、OCR文字识别、图像数据提取与分析。
  2. 技术:基于API调用,支持多轮对话、流式输出等特性。
  3. 应用:适用于内容审核、文档处理、医学影像分析、智能交互服务等场景。

正文(附运行示例)

moonshot-v1-vision-preview 是什么

moonshot-v1-vision-preview

moonshot-v1-vision-preview 是月之暗面推出的多模态图片理解模型,进一步完善了 moonshot-v1 模型系列的多模态能力。该模型具备强大的图像识别能力,能够精准区分复杂细节,如相似的蓝莓松饼和吉娃娃图片。在文字识别方面,模型表现优异,能够准确识别潦草手写内容,如收据单、快递单等。

此外,moonshot-v1-vision-preview 还能分析图像中的数据,如柱状图的科目成绩,并从美学角度评价图表。模型基于API调用,支持多轮对话、流式输出等特性,用户可以轻松将其集成到自己的应用中。

moonshot-v1-vision-preview 的主要功能

  • 图像识别:准确识别出图像中的复杂细节和细微差别,即使是相似度较高、人眼较难区分的对象,如蓝莓松饼和吉娃娃图片,模型也能精确地区分和识别。
  • OCR文字识别能力:在OCR文字识别和图像理解场景中表现突出,比普通的文件扫描和OCR识别软件更加准确。能识别收据单、快递单等文档中潦草的手写内容,准确提取文字信息。
  • 图像数据提取与分析:精准识别图像中的数据信息,如柱状图中的科目名称、分数数值等,进行数据对比分析。还能识别图像的样式格式、颜色等美学元素,从美学角度对图像进行评价。
  • API调用:基于API调用,用户能将模型集成到自己的应用中。

如何运行 moonshot-v1-vision-preview

1. 获取API密钥

首先,您需要在月之暗面平台上注册并获取API密钥。

2. 安装必要的库

使用以下命令安装所需的Python库:

pip install openai

3. 调用API

以下是一个简单的Python示例,展示如何调用moonshot-v1-vision-preview的API进行图像识别:

import os
import base64

from openai import OpenAI

client = OpenAI(
    api_key=os.environ.get("MOONSHOT_API_KEY"),
    base_url="https://api.moonshot.cn/v1",
)

# 在这里,你需要将 kimi.png 文件替换为你想让 Kimi 识别的图片的地址
image_path = "kimi.png"

with open(image_path, "rb") as f:
    image_data = f.read()

# 我们使用标准库 base64.b64encode 函数将图片编码成 base64 格式的 image_url
image_url = f"data:image/{os.path.splitext(image_path)[1]};base64,{base64.b64encode(image_data).decode('utf-8')}"


completion = client.chat.completions.create(
    model="moonshot-v1-8k-vision-preview",
    messages=[
        {
   "role": "system", "content": "你是 Kimi。"},
        {
   
            "role": "user",
            # 注意这里,content 由原来的 str 类型变更为一个 list,这个 list 中包含多个部分的内容,图片(image_url)是一个部分(part),
            # 文字(text)是一个部分(part)
            "content": [
                {
   
                    "type": "image_url", # <-- 使用 image_url 类型来上传图片,内容为使用 base64 编码过的图片内容
                    "image_url": {
   
                        "url": image_url,
                    },
                },
                {
   
                    "type": "text",
                    "text": "请描述图片的内容。", # <-- 使用 text 类型来提供文字指令,例如“描述图片内容”
                },
            ],
        },
    ],
)

print(completion.choices[0].message.content)

4. 运行示例

将上述代码保存为 moonshot_vision.py,然后在终端中运行:

python moonshot_vision.py

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日分享大模型与 AI 领域的最新开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

相关文章
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
迁移学习:让小数据也能驱动AI大模型
迁移学习:让小数据也能驱动AI大模型
372 99
|
6月前
|
人工智能 自然语言处理 数据可视化
通义灵码保姆级教程:从数据读取、清洗、结合大模型分析、可视化、生成报告全链路
本课程通过通义灵码实现零代码数据分析全流程,涵盖数据读取、清洗、可视化、报告生成及内容仿写,无需编程基础,轻松掌握从CSV导入到PDF报告输出的实战技能。
|
8月前
|
数据可视化 API Swift
全模态图像模型Nexus-Gen对齐GPT-4o!同时搞定,数据、训练框架、模型全面开源
OpenAI GPT-4o发布强大图片生成能力后,业界对大模型生图能力的探索向全模态方向倾斜,训练全模态模型成研发重点。
374 17
|
3月前
|
机器学习/深度学习 文字识别 Linux
Umi-OCR_文字识别工具 免安装使用教程(附下载安装包)!永久免费,开源离线OCR识别软件下载
Umi-OCR是一款开源免费、支持离线运行的高精度OCR文字识别工具,基于深度学习技术,可快速识别中文、英文、日文等多种语言。无需联网,保护隐私,适用于Windows和Linux系统,解压即用,操作简便,是处理图片转文本的理想选择。
2151 7
|
10月前
|
人工智能 文字识别 异构计算
SmolDocling:256M多模态小模型秒转文档!开源OCR效率提升10倍
SmolDocling 是一款轻量级的多模态文档处理模型,能够将图像文档高效转换为结构化文本,支持文本、公式、图表等多种元素识别,适用于学术论文、技术报告等多类型文档。
990 1
SmolDocling:256M多模态小模型秒转文档!开源OCR效率提升10倍
|
3月前
|
传感器 人工智能 监控
拔俗多模态跨尺度大数据AI分析平台:让复杂数据“开口说话”的智能引擎
在数字化时代,多模态跨尺度大数据AI分析平台应运而生,打破数据孤岛,融合图像、文本、视频等多源信息,贯通微观与宏观尺度,实现智能诊断、预测与决策,广泛应用于医疗、制造、金融等领域,推动AI从“看懂”到“会思考”的跃迁。
337 0
|
10月前
|
存储 人工智能 搜索推荐
WiseMindAI:一款AI智能知识库,数据完全本地化,支持文档对话、10+种文档、10+AI大模型等
WiseMindAI 是一款由 Chris 开发的 AI 智能学习助手,支持数据完全本地化存储,确保用户隐私安全。它兼容多种文档格式(如 PDF、Markdown 等),并提供 AI 文档总结、智能笔记、沉浸式翻译、知识卡片生成等功能。此外,WiseMindAI 支持 10+ 大语言模型和自定义 AI 插件,适用于 Windows 和 Mac 平台,支持简体中文、繁体中文及英文。
989 74
WiseMindAI:一款AI智能知识库,数据完全本地化,支持文档对话、10+种文档、10+AI大模型等
|
8月前
|
机器学习/深度学习 文字识别 自然语言处理
OCR技术:解锁文字识别的无限可能
OCR(光学字符识别)技术是数字化浪潮中的关键工具,可将纸质文档、手写笔记或复杂背景下的文字图像转化为可编辑文本。本文从图像采集、预处理、字符识别到文本校正,全面解析OCR技术的原理,并探讨其在智能办公、智慧交通、便捷生活等领域的广泛应用。未来,OCR将与自然语言处理、计算机视觉等技术深度融合,推动智能化和综合化发展。通过开放生态系统和政策支持,开发者可探索更多创新场景,如古籍数字化、盲人阅读等,为社会带来更多价值。
1937 57
|
9月前
|
缓存 人工智能 架构师
释放数据潜力:利用 MCP 资源让大模型读懂你的服务器
MCP(Model Control Protocol)资源系统是将服务器数据暴露给客户端的核心机制,支持文本和二进制两种类型资源。资源通过唯一URI标识,客户端可通过资源列表或模板发现资源,并使用`resources/read`接口读取内容。MCP还支持资源实时更新通知及订阅机制,确保动态数据的及时性。实现时需遵循最佳实践,如清晰命名、设置MIME类型和缓存策略,同时注重安全性,包括访问控制、路径清理和速率限制等。提供的示例代码展示了如何用JavaScript和Python实现资源支持。
1018 80

热门文章

最新文章