人工智能的三大主义

本文涉及的产品
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
实时计算 Flink 版,5000CU*H 3个月
简介: 人工智能的三大主义之一——符号主义,通过数学和逻辑符号构建表达式以模拟人类思维。其代表性成果包括1956年的“逻辑理论家”程序和上世纪80年代的专家系统。1997年,“深蓝”计算机击败国际象棋冠军卡斯帕罗夫,是符号主义在博弈领域的巅峰之作。然而,由于人类智能的复杂性和广泛性,符号主义难以完全模拟人类感知和潜智能,逐渐走向衰落。

image.png
提起机器学习肯定是绕不开人工智能的,我们首先看看人工智能的三个主义——符号主义,连接主义,行为主义,一个六芒星的符号,一个神经结,一个机器操作臂
image.png
它叫做符号主义,是因为它使用了数学和物理学中的逻辑符号,如变量、常量、函数、谓词、量词等,来构建复杂的表达式和语句,从而表达知识和逻辑。
符号主义学派是人工智能的早期和主流学派之一,它的代表性成果有专家系统和知识工程等。
image.png
符号主义首个代表性成果是: 1956年Newell和 Simon等人研制的成为“逻辑理论家”的数学定理证明程序LT,可以证明出《自然哲学的数字原理》(Principia Mathematica)(牛顿编写)中的38条数学定理(后来可以证明全部52条定理),表明了可以应用计算机研究人的思维过程,模拟人类智能活动。
符号主义最辉煌的时候,是专家系统,专家系统的能力来自于它们存储的专业知识,知识库系统和知识工程成为了上世纪80年代AI研究的主要方向。
image.png
1997年5月,名为“深蓝”的IBM超级计算机打败了国际象棋世界冠军卡斯帕罗夫,这一事件在当时也曾轰动世界,其实本质上,“深蓝”就是符号主义在博弈领域的成果。
在20世纪80年代末,符号主义学派开始衰落。其原因如下:

符号主义试图将人类思想、行为和结果抽象为简洁深入的规则,类似于数学定理。然而,人类的思想是极其复杂而广泛的,而人类的智能不仅仅是逻辑和推理的结果。
人类抽象出的符号,源头是身体对物理世界的感知,人类能够通过符号进行交流,是因为人类拥有类似的身体。计算机只处理符号,就不可能有类人感知,人类可意会而不能言传的“潜智能”,不必或不能形式化为符号,更是计算机不能触及的。

待更新。。。

目录
打赏
0
0
0
0
0
分享
相关文章
人工智能的三大主义--——行为主义(actionism),连接主义 (connectionism)
这段内容涵盖了人工智能领域的重要概念和历史节点。首先介绍了布鲁克斯的六足行走机器人及Spot机器狗,被视为新一代“控制论动物”。接着解释了感知机作为最简单的人工神经网络,通过特征向量进行二分类。1974年,沃伯斯提出误差反向传播(BP)算法,利用梯度调整权重以优化模型。最后,阐述了符号主义、连接主义和行为主义三大学派的发展与融合,强调它们在持续学习中共同推动人工智能的进步。
人工智能的三大主义--——行为主义(actionism),连接主义 (connectionism)
人工智能同时需要实用主义者和蓝天梦想家
为了人类最光明的未来,人工智能中的蓝天崇高思想家需要泥靴实用主义者的帮助
171 0
人工智能同时需要实用主义者和蓝天梦想家
探索人工智能在现代医疗中的革新应用
本文深入探讨了人工智能(AI)技术在医疗领域的最新进展,重点分析了AI如何通过提高诊断准确性、个性化治疗方案的制定以及优化患者管理流程来革新现代医疗。文章还讨论了AI技术面临的挑战和未来发展趋势,为读者提供了一个全面了解AI在医疗领域应用的视角。
85 11
人工智能在医疗诊断中的应用与前景####
本文深入探讨了人工智能(AI)技术在医疗诊断领域的应用现状、面临的挑战及未来发展趋势。通过分析AI如何辅助医生进行疾病诊断,提高诊断效率和准确性,以及其在个性化医疗中的潜力,文章揭示了AI技术对医疗行业变革的推动作用。同时,也指出了数据隐私、算法偏见等伦理问题,并展望了AI与人类医生协同工作的前景。 ####
140 0
人工智能在变更管理中的应用:变革的智能化之路
人工智能在变更管理中的应用:变革的智能化之路
34 13
人工智能在客服领域有哪些应用?
人工智能正在彻底改变着传统客服行业,它不仅拓展了业务边界,还推动着整个行业向更高效、更人性化方向迈进。
50 7
人工智能在农业中的应用:智慧农业的未来
人工智能在农业中的应用:智慧农业的未来
70 11
云原生AI加速生成式人工智能应用的部署构建
本文探讨了云原生技术背景下,尤其是Kubernetes和容器技术的发展,对模型推理服务带来的挑战与优化策略。文中详细介绍了Knative的弹性扩展机制,包括HPA和CronHPA,以及针对传统弹性扩展“滞后”问题提出的AHPA(高级弹性预测)。此外,文章重点介绍了Fluid项目,它通过分布式缓存优化了模型加载的I/O操作,显著缩短了推理服务的冷启动时间,特别是在处理大规模并发请求时表现出色。通过实际案例,展示了Fluid在vLLM和Qwen模型推理中的应用效果,证明了其在提高模型推理效率和响应速度方面的优势。
云原生AI加速生成式人工智能应用的部署构建
盘点人工智能在医疗诊断领域的应用
人工智能在医疗诊断领域的应用广泛,包括医学影像诊断、疾病预测与风险评估、病理诊断、药物研发、医疗机器人、远程医疗诊断和智能辅助诊断系统等。这些应用提高了诊断的准确性和效率,改善了患者的治疗效果和生活质量。然而,数据质量和安全性、AI系统的透明度等问题仍需关注和解决。
274 10
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等