FlowiseAI:34K Star!集成多种模型和100+组件的 LLM 应用低代码开发平台,拖拽组件轻松构建程序

简介: FlowiseAI 是一款开源的低代码工具,通过拖拽可视化组件,用户可以快速构建自定义的 LLM 应用程序,支持多模型集成和记忆功能。

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日分享大模型与 AI 领域的最新开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


🚀 快速阅读

  1. 功能:通过拖拽可视化组件,快速构建自定义 LLM 应用,支持多模型集成和记忆功能。
  2. 部署:支持本地、Docker 和云平台部署,操作简单,适合不同场景。
  3. 应用:适用于聊天机器人、工作流自动化和文档问答等多种场景。

正文(附运行示例)

FlowiseAI 是什么

FlowiseAI

FlowiseAI 是一款开源的低代码或无代码工具,通过拖拽可视化组件,用户可以快速构建自定义的 LLM 应用程序。它提供了一套易于使用的工具和组件,无需或仅需少量编码,用户能够快速创建、部署和维护各种应用程序。

FlowiseAI 的设计理念是让开发者和非开发者都能轻松上手,通过简单的拖拽操作即可完成复杂的 LLM 应用构建。无论是聊天机器人、工作流自动化,还是文档问答系统,FlowiseAI 都能提供强大的支持。

FlowiseAI 的主要功能

flowiseai-llm.png

  • LLM 应用构建:通过拖拽可视化组件,用户可以快速构建自定义的 LLM 应用程序,无需或仅需少量编码。例如,可以创建一个上传 PDF 文件作为知识库的 Chatflow,从而得到基于该 PDF 的回答。
  • 多模型集成:支持与多种大语言模型(如 OpenAI、HuggingFace 等)以及向量数据库(如 Pinecone、Faiss 等)的集成。
  • 记忆与对话功能:具备记忆功能,能创建具有记忆能力的对话代理,使对话更加连贯和自然。
  • API 与嵌入:提供 API、SDK 和嵌入式聊天功能,方便开发者将 Flowise 应用集成到其他应用程序中。

如何运行 FlowiseAI

1. 安装 Flowise

首先,确保你已经安装了 Node.js(版本 >= 18.15.0),然后通过以下命令安装 Flowise:

npm install -g flowise

2. 启动 Flowise

安装完成后,可以通过以下命令启动 Flowise:

npx flowise start

如果你希望设置用户名和密码,可以使用以下命令:

npx flowise start --FLOWISE_USERNAME=user --FLOWISE_PASSWORD=1234

3. 访问 Flowise

启动成功后,打开浏览器访问 http://localhost:3000,即可开始使用 FlowiseAI。

4. Docker 部署

如果你更喜欢使用 Docker,可以通过以下步骤进行部署:

docker build --no-cache -t flowise .
docker run -d --name flowise -p 3000:3000 flowise

启动后,同样可以通过 http://localhost:3000 访问 FlowiseAI。

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日分享大模型与 AI 领域的最新开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

相关文章
|
3月前
|
缓存 物联网 PyTorch
使用TensorRT LLM构建和运行Qwen模型
本文档介绍如何在单GPU和单节点多GPU上使用TensorRT LLM构建和运行Qwen模型,涵盖模型转换、引擎构建、量化推理及LoRA微调等操作,并提供详细的代码示例与支持矩阵。
992 2
|
3月前
|
Web App开发 人工智能 自然语言处理
利用Playwright MCP与LLM构建复杂的工作流与AI智能体
本文介绍如何通过Playwright MCP与大语言模型(LLM)结合,构建智能AI代理与自动化工作流。Playwright MCP基于Model Context Protocol,打通LLM与浏览器自动化的能力,实现自然语言驱动的网页操作。涵盖环境配置、核心组件、智能任务规划、自适应执行及电商采集、自动化测试等实战应用,助力高效构建鲁棒性强、可扩展的AI自动化系统。
|
3月前
|
存储 Prometheus 监控
136_生产监控:Prometheus集成 - 设置警报与指标选择与LLM部署监控最佳实践
在大语言模型(LLM)部署的生产环境中,有效的监控系统是确保服务稳定性、可靠性和性能的关键。随着LLM模型规模的不断扩大和应用场景的日益复杂,传统的监控手段已难以满足需求。Prometheus作为当前最流行的开源监控系统之一,凭借其强大的时序数据收集、查询和告警能力,已成为LLM部署监控的首选工具。
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
12_机器翻译入门:多语言LLM应用
在全球化背景下,语言障碍一直是信息交流、商业合作和文化传播的重要阻碍。2025年,随着多语言大语言模型(LLM)技术的突破,机器翻译已经从简单的单词转换发展为能够理解上下文、处理复杂句式、适应文化差异的智能系统。本文将带您入门多语言LLM在机器翻译领域的应用,重点介绍使用mT5(多语言T5)模型实现英语到中文的翻译,并探讨文化适应等高级话题。
|
3月前
|
数据采集 存储 自然语言处理
113_数据收集:Common Crawl过滤与高质量LLM训练数据构建
在大型语言模型(LLM)的训练过程中,数据质量直接决定了模型的性能上限。即使拥有最先进的模型架构和训练算法,如果没有高质量的训练数据,也难以训练出优秀的语言模型。Common Crawl作为目前互联网上最大的公开网络爬虫数据集之一,为LLM训练提供了宝贵的资源。然而,从原始的Common Crawl数据中提取高质量的训练素材并非易事,需要经过严格的过滤和清洗。本文将全面探讨Common Crawl数据集的特性、过滤策略的设计原则、以及2025年最新的过滤技术,为构建高质量的LLM训练语料提供系统指导。
|
3月前
|
Prometheus 监控 Cloud Native
72_监控仪表盘:构建LLM开发环境的实时观测系统
在2025年的大模型(LLM)开发实践中,实时监控已成为确保模型训练效率和生产部署稳定性的关键环节。与传统软件开发不同,LLM项目面临着独特的监控挑战
|
3月前
|
机器学习/深度学习 自然语言处理 算法
48_动态架构模型:NAS在LLM中的应用
大型语言模型(LLM)在自然语言处理领域的突破性进展,很大程度上归功于其庞大的参数量和复杂的网络架构。然而,随着模型规模的不断增长,计算资源消耗、推理延迟和部署成本等问题日益凸显。如何在保持模型性能的同时,优化模型架构以提高效率,成为2025年大模型研究的核心方向之一。神经架构搜索(Neural Architecture Search, NAS)作为一种自动化的网络设计方法,正在为这一挑战提供创新性解决方案。本文将深入探讨NAS技术如何应用于LLM的架构优化,特别是在层数与维度调整方面的最新进展,并通过代码实现展示简单的NAS实验。
|
3月前
|
监控 数据可视化 测试技术
16_LLM交互式调试:用Streamlit构建可视化工具
在大语言模型(LLM)的应用开发过程中,调试一直是一个复杂且具有挑战性的任务。传统的调试方法往往依赖于静态日志、断点调试和反复的命令行交互,这种方式在处理LLM这类黑盒模型时显得尤为低效。随着2025年LLM技术的普及和应用场景的多样化,开发人员迫切需要一种更加直观、高效的调试方式。
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
15_批量处理文本:LLM在数据集上的应用
在大语言模型(LLM)的实际应用中,我们很少只处理单条文本。无论是数据分析、内容生成还是模型训练,都需要面对海量文本数据的处理需求。批量处理技术是连接LLM与实际应用场景的关键桥梁,它能够显著提升处理效率、降低计算成本,并实现更复杂的数据流水线设计。

热门文章

最新文章