NeurIPS 2024最佳论文,扩散模型的创新替代:基于多尺度预测的视觉自回归架构

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: 本文详细解读NeurIPS 2024最佳论文《视觉自回归建模:基于下一尺度预测的可扩展图像生成》。该研究提出VAR模型,通过多尺度token图和VAR Transformer结构,实现高效、高质量的图像生成,解决了传统自回归模型在二维结构信息、泛化能力和计算效率上的局限。实验表明,VAR在图像质量和速度上超越现有扩散模型,并展示出良好的扩展性和零样本泛化能力。未来研究将聚焦于文本引导生成和视频生成等方向。

本文将详细解读NeurIPS 2024最佳论文:"Visual Autoregressive Modeling: Scalable Image Generation via Next-Scale Prediction(视觉自回归建模:基于下一尺度预测的可扩展图像生成)"

该论文提出了视觉自回归建模(Visual Autoregressive Modeling,VAR)方法,在图像生成领域实现了重要突破。VAR通过精确捕捉图像结构特征,实现了高效率、高质量的图像生成。该方法对当前以扩散模型为主导的图像生成领域提出了新的技术方向,为自回归模型开辟了新的发展空间。本文将从技术原理、实现方法、应用场景及局限性等方面进行详细分析。

图像生成的两大技术路线:扩散模型与自回归模型

图像生成技术主要包含两个主要分支。第一个分支是扩散模型(Diffusion Models),其核心原理是通过逐步添加噪声并随后反向去噪来生成图像。近年来扩散模型在图像生成领域取得了显著进展,并成为主流技术方案。

第二个分支是自回归模型(Autoregressive Models,AR Models)。这类模型采用逐步构建的方式生成图像,即基于已生成的部分预测图像的下一个组成部分。自回归模型是GPT等大型语言模型的核心技术,同时在图像生成领域也取得了重要进展。自回归模型通常基于卷积神经网络或Transformer架构实现。本文重点讨论的VAR模型即属于自回归模型家族。

传统自回归模型的技术局限

传统自回归模型将二维图像转换为一维token序列,并按照光栅扫描模式顺序预测这些token。这种方法存在以下技术局限:

  • 二维结构信息损失: 图像token在水平和垂直方向上均存在关联性,但传统自回归模型的顺序生成机制难以有效建模这种二维依赖关系,影响了图像结构的完整性建模。
  • 泛化能力受限: 顺序生成模式导致模型对生成顺序具有强依赖性。例如一个按照从上到下顺序训练的模型,在要求反向生成时性能会显著降低。
  • 空间信息缺失: 将二维图像压缩为一维序列的过程中,相邻token之间的空间关系信息会丢失,这限制了模型对图像结构的理解和重建能力。
  • 计算效率低下: 传统自回归模型的计算复杂度随图像token数量呈O(n⁶)增长,这种复杂度使得高分辨率图像的生成在计算资源方面面临严峻挑战。

VAR:基于下一尺度预测的技术创新

VAR模型通过引入"下一尺度预测"范式来解决传统自回归模型的技术局限。该方法将图像表示为多尺度token图,并采用从低分辨率到高分辨率的粗细层次结构进行自回归生成。

  • 多尺度VQVAE架构: VAR首先采用向量量化变分自编码器(Vector Quantized Variational Autoencoder,VQVAE)将图像编码为多尺度token图。VQVAE能够将图像的高维特征向量量化为离散码向量。系统在不同分辨率层次提取的特征图通过码本量化得到对应的token图表示。
  • VAR Transformer结构: VAR Transformer模块基于已生成的低分辨率token图预测下一个更高分辨率的token图。系统支持每个分辨率层次的token图并行生成,显著提升了计算效率。训练过程中采用块状因果掩码确保token图的生成仅依赖于较低分辨率的信息。

VAR系统工作机制

  1. 多尺度VQVAE编码环节:输入图像经由多尺度VQVAE编码器处理,生成多个分辨率层次的特征图,随后将各特征图量化为相应的token图表示。
  2. VAR Transformer生成过程:VAR Transformer从最低分辨率token图开始,逐步自回归地生成更高分辨率的token图序列。在每个生成步骤中,系统输入已有的全部token图及其位置编码信息。
  3. 多尺度VQVAE解码过程:生成的多尺度token图通过多尺度VQVAE解码器重建为最终图像。解码器利用token图的索引信息从码本中检索相应的码向量,并通过插值和卷积操作重建图像。

技术说明: 在公式1中,图像片段序列的生成概率被定义为各个片段条件概率的乘积,表示为P(x₁, x₂, …, xₜ) = ∏ P(xᵢ | x₁…xᵢ₋₁)。其中xᵢ表示单个图像片段,t代表片段总数。

VAR的技术优势

VAR系统在多个方面突破了传统自回归模型的局限:

  • 数学建模优化: VAR通过粗细层次的生成机制有效解决了二维结构建模问题,通过整体token图的预测处理了复杂的依赖关系。
  • 泛化性能提升: VAR系统通过学习图像的整体结构特征,在各类输入场景下表现稳定,包括零样本图像修复和扩展任务。
  • 空间信息保持: VAR在处理token图的过程中保持二维图像结构完整,多尺度架构有效捕捉了空间层次关系。
  • 计算效率提升: VAR通过分辨率内的并行token生成和递归尺度扩展,将计算复杂度降低至O(n⁴),显著提升了系统效率。
  • 图像质量改进: VAR在图像质量和推理速度方面均超越了现有的扩散Transformer模型。

VAR系统的训练与推理

VAR系统采用两阶段训练策略:

  1. 多尺度VQVAE训练阶段(第一阶段): 使用原始图像数据训练多尺度VQVAE模型。训练目标是最小化重建图像与原始图像之间的误差,同时生成多分辨率token图。在训练过程中,系统同步优化码本以提升特征表示能力。
  2. VAR Transformer训练阶段(第二阶段): 利用训练完成的VQVAE模型将图像转换为token图序列,随后训练VAR Transformer模型。VAR Transformer学习利用已有的低分辨率token图预测下一级token图,训练过程中采用因果掩码确保预测只依赖已知信息。

VAR系统的推理过程包含以下步骤:

  1. 多尺度VQVAE编码步骤: 利用训练好的VQVAE模型将输入图像编码为多尺度token图序列。
  2. VAR Transformer生成步骤: 从最低分辨率token图开始,VAR Transformer逐级生成更高分辨率的token图。
  3. 多尺度VQVAE解码步骤: 利用多尺度VQVAE解码器将生成的token图序列重建为最终输出图像。

实验验证与扩展性分析

论文通过系统实验验证了VAR模型的性能优势。在ImageNet数据集上的测试表明,VAR在图像生成质量和速度方面均优于现有扩散Transformer模型。实验结果同时展示了VAR性能随模型规模增长的良好扩展特性。

实验还证实了VAR系统在图像修复、扩展等零样本任务中的出色泛化能力,表明该模型不仅能够生成图像,还能深入理解图像结构特征。

技术局限与未来发展方向

VAR系统虽然实现了重要突破,但仍存在以下技术局限:

  • 文本引导图像生成能力: 当前VAR系统尚未实现文本条件下的图像生成功能。未来研究需要着重扩展模型的多模态处理能力。
  • 视频生成应用: VAR在视频生成领域的应用潜力有待探索。后续研究需要探索VAR框架在时序数据生成中的扩展应用。
  • 模型复杂性: VAR采用的两阶段训练策略(VQVAE和Transformer)增加了系统复杂度,需要进一步研究简化训练流程和提升学习效率的方法。

总结

VAR系统在图像生成领域实现了方法论层面的重要创新,成功克服了传统自回归模型的多项技术局限。通过引入"下一尺度预测"范式,VAR不仅能够精确捕捉图像结构特征,还实现了高效率的高质量图像生成。VAR在可扩展性和零样本泛化能力方面的优势,预示着该技术将对图像生成领域产生深远影响。

论文地址:

https://avoid.overfit.cn/post/6b65bf03189949608b81a8543800521c

作者:Daniel Park

目录
相关文章
|
2月前
|
机器学习/深度学习 自然语言处理 分布式计算
大规模语言模型与生成模型:技术原理、架构与应用
本文深入探讨了大规模语言模型(LLMs)和生成模型的技术原理、经典架构及应用。介绍了LLMs的关键特点,如海量数据训练、深层架构和自监督学习,以及常见模型如GPT、BERT和T5。同时,文章详细解析了生成模型的工作原理,包括自回归模型、自编码器和GANs,并讨论了这些模型在自然语言生成、机器翻译、对话系统和数据增强等领域的应用。最后,文章展望了未来的发展趋势,如模型压缩、跨模态生成和多语言多任务学习。
318 3
|
9天前
|
机器学习/深度学习 计算机视觉
Make U-Nets Great Again!北大&华为提出扩散架构U-DiT,六分之一算力即可超越DiT
北京大学和华为研究人员提出U-shaped Diffusion Transformers(U-DiTs),重新审视U-Net架构在扩散模型中的潜力。通过引入Token Downsampling方法,U-DiTs在ImageNet 256x256和512x512生成任务中显著提升性能并降低计算成本。实验表明,U-DiT模型不仅超越了DiT模型的性能,在计算效率上也更具优势。论文地址:https://arxiv.org/pdf/2405.02730
63 43
|
5天前
|
搜索推荐 架构师 数据挖掘
架构实操:画好一张业务模型图
本文以SDK设计的角度分析了如何构建一张属于SDK的各个业务的模型图。
|
1月前
|
机器学习/深度学习 人工智能
一个模型走天下!智源提出全新扩散架构OmniGen,AI生图进入一键生成时代
智源研究院推出OmniGen,一种全新的扩散模型,旨在克服现有图像生成模型的局限性。OmniGen能处理文本到图像、图像编辑等多任务,具备高效、简洁的架构,仅含VAE和预训练Transformer。通过大规模统一数据集X2I训练,OmniGen展现了强大的多任务处理能力和知识转移能力,适用于虚拟试穿、图像修复等多个领域。尽管如此,OmniGen在特定任务上的性能、训练资源需求及可解释性等方面仍面临挑战。
41537 20
|
1月前
|
机器学习/深度学习 测试技术 定位技术
新扩散模型OmniGen一统图像生成,架构还高度简化、易用
近期,一篇题为“OmniGen: Unified Image Generation”的论文介绍了一种新型扩散模型OmniGen,旨在统一图像生成任务。OmniGen架构简洁,无需额外模块即可处理多种任务,如文本到图像生成、图像编辑等。该模型通过修正流优化,展现出与现有模型相当或更优的性能,尤其在图像编辑和视觉条件生成方面表现突出。OmniGen仅含3.8亿参数,却能有效处理复杂任务,简化工作流程。尽管如此,OmniGen仍存在对文本提示敏感、文本渲染能力有限等问题,未来研究将继续优化其架构与功能。
60 16
|
2月前
|
网络协议 网络架构
TCP/IP协议架构:四层模型详解
在网络通信的世界里,TCP/IP协议栈是构建现代互联网的基础。本文将深入探讨TCP/IP协议涉及的四层架构,以及每一层的关键功能和作用。
255 5
|
2月前
|
机器学习/深度学习 存储 人工智能
【AI系统】模型演进与经典架构
本文探讨了AI计算模式对AI芯片设计的重要性,通过分析经典模型结构设计与演进、模型量化与压缩等核心内容,揭示了神经网络模型的发展现状及优化方向。文章详细介绍了神经网络的基本组件、主流模型结构、以及模型量化和剪枝技术,强调了这些技术在提高模型效率、降低计算和存储需求方面的关键作用。基于此,提出了AI芯片设计应考虑支持神经网络计算逻辑、高维张量存储与计算、灵活的软件配置接口、不同bit位数的计算单元和存储格式等建议,以适应不断发展的AI技术需求。
59 5
|
2月前
|
机器学习/深度学习 自然语言处理 物联网
NeurIPS 2024 Oral:小参数,大作为!揭秘非对称 LoRA 架构的高效性能
近期,一篇题为《\model~: 非对称LoRA架构实现高效微调》的论文被NeurIPS 2024接收为口头报告,该研究提出了一种创新的非对称LoRA架构,旨在解决大型语言模型(LLMs)在保持高性能的同时提高训练和部署效率的问题。通过引入共享A矩阵和多个B矩阵,\model~不仅提高了参数效率,还在多个数据集上展示了超越现有PEFT方法的性能,尤其是在多任务域和复杂数据集上的表现尤为突出。此架构还有效减少了训练能耗和延迟,为LLMs的高效应用提供了新思路。
52 4
|
1月前
|
弹性计算 API 持续交付
后端服务架构的微服务化转型
本文旨在探讨后端服务从单体架构向微服务架构转型的过程,分析微服务架构的优势和面临的挑战。文章首先介绍单体架构的局限性,然后详细阐述微服务架构的核心概念及其在现代软件开发中的应用。通过对比两种架构,指出微服务化转型的必要性和实施策略。最后,讨论了微服务架构实施过程中可能遇到的问题及解决方案。
|
2月前
|
Cloud Native Devops 云计算
云计算的未来:云原生架构与微服务的革命####
【10月更文挑战第21天】 随着企业数字化转型的加速,云原生技术正迅速成为IT行业的新宠。本文深入探讨了云原生架构的核心理念、关键技术如容器化和微服务的优势,以及如何通过这些技术实现高效、灵活且可扩展的现代应用开发。我们将揭示云原生如何重塑软件开发流程,提升业务敏捷性,并探索其对企业IT架构的深远影响。 ####
70 3