VideoRAG:长视频理解的检索增强生成技术,支持多模态信息提取,能与任何 LVLM 兼容

本文涉及的产品
视觉智能开放平台,图像资源包5000点
视觉智能开放平台,分割抠图1万点
视觉智能开放平台,视频资源包5000点
简介: VideoRAG 是一种用于长视频理解的检索增强生成技术,通过提取视频中的视觉对齐辅助文本,帮助大型视频语言模型更好地理解和处理长视频内容。

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日分享大模型与 AI 领域的最新开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


🚀 快速阅读

  1. 技术核心:VideoRAG 通过检索增强生成技术,从长视频中提取与用户查询相关的辅助文本,帮助模型更好地理解和生成响应。
  2. 功能亮点:支持多模态信息提取,包括光学字符识别、自动语音识别和对象检测,具有轻量级和高效性。
  3. 应用场景:广泛应用于视频问答系统、视频内容分析、教育培训、娱乐媒体创作及企业内部知识管理。

正文(附运行示例)

VideoRAG 是什么

VideoRAG

VideoRAG 是一种用于长视频理解的检索增强生成(Retrieval-Augmented Generation)技术。它通过提取视频中的视觉对齐辅助文本,帮助大型视频语言模型(LVLMs)更好地理解和处理长视频内容。

具体来说,VideoRAG 使用开源工具从视频数据中提取音频、文字和对象检测等信息,将这些信息作为辅助文本与视频帧和用户查询一起输入到现有的 LVLM 中。这种方法计算开销低,易于实现,能与任何 LVLM 兼容。在多个长视频理解基准测试中,VideoRAG 展现出了显著的性能提升。

VideoRAG 的主要功能

  • 检索增强生成:通过检索增强生成(RAG)技术,VideoRAG 能从长视频中提取与用户查询相关的辅助文本,帮助模型更好地理解和生成响应。
  • 多模态信息提取:基于开源工具(如 EasyOCR、Whisper 和 APE),VideoRAG 从视频中提取多种类型的辅助文本,包括光学字符识别(OCR)、自动语音识别(ASR)和对象检测(DET)信息。
  • 轻量级与高效性:VideoRAG 采用单次检索的方式,具有轻量级和低计算开销的特点,易于与现有的大型视频语言模型(LVLMs)集成。

VideoRAG 的技术原理

  • 辅助文本提取:基于开源工具从视频中提取多种类型的辅助文本信息,包括光学字符识别(OCR)、自动语音识别(ASR)和对象检测(DET)等。分别处理视频的文本、音频和视觉内容,生成与视频帧对齐的文本描述。
  • 检索模块:将提取的辅助文本信息存储在向量数据库中,通过检索技术从数据库中找到与用户查询最相关的文本片段。是通过将用户查询和视频内容的特征向量与数据库中的文本向量进行匹配来实现的。
  • 生成模块:将检索到的辅助文本与视频帧和用户查询一起输入到现有的大型视频语言模型(LVLM)中。模型基于这些信息生成对用户查询的响应,辅助文本提供了额外的上下文信息,帮助模型更好地理解和生成与视频内容相关的回答。
  • 跨模态对齐:通过辅助文本的引入,VideoRAG 促进了视频帧与用户查询之间的跨模态对齐,使模型能够更准确地关注与查询相关的关键帧。

如何运行 VideoRAG

1. 克隆并构建 LLaVA-NeXT 环境

git clone https://github.com/LLaVA-VL/LLaVA-NeXT
cd LLaVA-NeXT
conda create -n llava python=3.10 -y
conda activate llava
pip install --upgrade pip
pip install -e ".[train]"

2. 安装必要的依赖包

pip install spacy faiss-cpu easyocr ffmpeg-python
pip install torch==2.1.2 torchaudio numpy
python -m spacy download en_core_web_sm

3. 克隆并构建 APE 环境

git clone https://github.com/shenyunhang/APE
cd APE
pip3 install -r requirements.txt
python3 -m pip install -e .

4. 运行 APE 服务

python demo/ape_service.py

5. 运行 VideoRAG 管道

python vidrag_pipeline.py

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日分享大模型与 AI 领域的最新开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

相关文章
|
18天前
|
人工智能 自然语言处理 安全
通过阿里云Milvus与PAI搭建高效的检索增强对话系统
阿里云向量检索Milvus版是一款全托管的云服务,兼容开源Milvus并支持无缝迁移。它提供大规模AI向量数据的相似性检索服务,具备易用性、可用性、安全性和低成本等优势,适用于多模态搜索、检索增强生成(RAG)、搜索推荐、内容风险识别等场景。用户可通过PAI平台部署RAG系统,创建和配置Milvus实例,并利用Attu工具进行可视化操作,快速开发和部署应用。使用前需确保Milvus实例和PAI在相同地域,并完成相关配置与开通服务。
|
18天前
|
人工智能 自然语言处理 数据处理
FlexRAG:不再局限于文本的 RAG!中科院开源多模态 RAG 助手,支持多数据类型、上下文压缩和多种检索器类型
FlexRAG 是中科院推出的高性能多模态 RAG 框架,支持多数据类型、上下文压缩和多模态数据处理,显著提升生成模型的表现。
117 17
FlexRAG:不再局限于文本的 RAG!中科院开源多模态 RAG 助手,支持多数据类型、上下文压缩和多种检索器类型
|
21天前
|
人工智能 数据挖掘 API
R2R:开源的 RAG 集成系统,支持多模态处理、混合搜索、知识图谱构建等增强检索技术
R2R 是一款先进的 AI 检索增强生成平台,支持多模态内容处理、混合搜索和知识图谱构建,适用于复杂数据处理和分析的生产环境。
118 3
R2R:开源的 RAG 集成系统,支持多模态处理、混合搜索、知识图谱构建等增强检索技术
|
21天前
|
人工智能
TITAN:哈佛医学院推出多模态全切片病理基础模型,支持病理报告生成、跨模态检索
TITAN 是哈佛医学院研究团队开发的多模态全切片病理基础模型,通过视觉自监督学习和视觉-语言对齐预训练,能够在无需微调或临床标签的情况下提取通用切片表示,生成病理报告。
66 8
TITAN:哈佛医学院推出多模态全切片病理基础模型,支持病理报告生成、跨模态检索
|
1月前
|
存储 人工智能 数据库
面向医疗场景的大模型 RAG 检索增强解决方案
本方案为您介绍,如何使用人工智能平台 PAI 构建面向医疗场景的大模型 RAG 检索增强解决方案。
|
1月前
|
存储 人工智能 数据库
面向金融场景的大模型 RAG 检索增强解决方案
本方案为您介绍,如何使用人工智能平台 PAI 构建面向金融场景的大模型 RAG 检索增强解决方案。
|
2月前
|
存储 边缘计算 自然语言处理
25 个值得关注的检索增强生成 (RAG) 模型和框架
大型语言模型(LLM)如GPT-4在自然语言处理(NLP)领域展现了卓越能力,但也存在知识截止、静态知识库和内存限制等局限。检索增强生成(RAG)通过集成检索机制,允许LLM动态访问和整合外部数据源,提高了生成响应的准确性、相关性和时效性。本文深入探讨了25种先进的RAG变体,每种变体都旨在优化检索和生成过程的特定方面,涵盖成本限制、实时交互和多模态数据集成等问题,展示了RAG在提升NLP能力方面的多功能性和潜力。
103 4
25 个值得关注的检索增强生成 (RAG) 模型和框架
|
2月前
|
数据采集 人工智能 自然语言处理
文档智能与检索增强生成结合的LLM知识库方案测评:优势与改进空间
《文档智能 & RAG让AI大模型更懂业务》解决方案通过结合文档智能和检索增强生成(RAG)技术,构建企业级文档知识库。方案详细介绍了文档清洗、向量化、问答召回等步骤,但在向量化算法选择、多模态支持和用户界面上有待改进。部署过程中遇到一些技术问题,建议优化性能和增加实时处理能力。总体而言,方案在金融、法律、医疗等领域具有广泛应用前景。
81 11
|
3月前
|
存储 人工智能 自然语言处理
高级 RAG 技术:提升生成式 AI 系统输出质量与性能鲁棒性【预检索、检索、检索后、生成优化等】
高级 RAG 技术:提升生成式 AI 系统输出质量与性能鲁棒性【预检索、检索、检索后、生成优化等】
高级 RAG 技术:提升生成式 AI 系统输出质量与性能鲁棒性【预检索、检索、检索后、生成优化等】
|
3月前
|
数据采集 自然语言处理 UED
文档智能和检索增强生成(RAG)技术
文档智能和检索增强生成(RAG)技术

热门文章

最新文章