❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日分享大模型与 AI 领域的最新开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术,欢迎关注我哦!
🥦 微信公众号|搜一搜:蚝油菜花 🥦
🚀 快速阅读
- 知识增强:KAG 通过知识图谱和向量检索结合,提升大型语言模型在特定领域的问答能力。
- 混合推理:采用逻辑形式引导的混合推理引擎,支持复杂问题的符号化和结构化求解。
- 知识对齐:通过语义推理进行知识对齐,提升知识的标准化和连通性。
正文(附运行示例)
KAG 是什么
KAG(Knowledge Augmented Generation)是蚂蚁集团推出的专业领域知识服务框架,旨在通过知识增强提升大型语言模型(LLMs)在特定领域的问答性能。KAG 基于知识和文本块的互索引结构,整合非结构化数据、结构化信息以及业务专家经验,形成统一的业务知识图谱。
KAG 推出了逻辑形式引导的混合推理引擎,将自然语言问题转化为结合语言和符号的问题解决过程,支持逻辑推理和多跳事实问答等功能,有效克服传统 RAG 向量相似性计算的模糊性和 OpenIE 引入的噪声问题,显著提升推理和问答的准确性和效率。
KAG 的主要功能
- 专业领域问答增强:结合知识图谱和向量检索,提升大型语言模型在特定领域的问答能力,生成更准确、专业和逻辑性强的答案。
- 知识表示与检索优化:用LLM友好的知识表示框架,实现知识图谱与原始文本块的互索引,优化知识的表示、推理和检索过程,提高检索结果的准确性和相关性。
- 混合推理与问题解决:基于逻辑形式引导的混合推理引擎,将自然语言问题转化为结合语言和符号的问题解决过程,实现检索、知识图谱推理、语言推理和数值计算的集成,有效处理复杂问题。
- 知识对齐与语义增强:基于语义推理进行知识对齐,定义领域知识为各种语义关系,提高知识的标准化和连通性,增强知识表示的准确性和一致性。
KAG 的技术原理
- 知识图谱与向量检索结合:基于知识图谱的结构化语义信息和向量检索的高效性,知识图谱组织和表示领域知识,借助向量检索快速获取与问题相关的知识片段。
- LLM友好的知识表示:设计LLMFriSPG框架,将知识图谱的数据、信息和知识层次结构与大型语言模型的输入输出格式相适配,实现知识的统一表示和有效传递。
- 互索引机制:建立知识图谱结构与原始文本块之间的互索引关系,让图结构中的实体、关系等与文本块中的内容相互关联,增强知识的语义连通性和检索的准确性。
- 逻辑形式引导推理:采用逻辑形式语言将复杂问题分解为多个子问题,基于规划、推理和检索等操作符进行求解,实现问题解决过程的符号化和结构化,提高推理的严谨性和可解释性。
- 语义推理与知识对齐:在知识图谱的构建和检索过程中,用语义推理技术对知识进行对齐和整合,识别和建立知识之间的语义关系,提升知识的准确性和一致性。
如何运行 KAG
1. 安装依赖
首先,确保你的系统满足以下要求:
- 推荐系统版本:macOS Monterey 12.6 或更高版本,CentOS 7 / Ubuntu 20.04 或更高版本,Windows 10 LTSC 2021 或更高版本。
- 软件要求:macOS / Linux 用户需要安装 Docker 和 Docker Compose,Windows 用户需要安装 WSL 2 / Hyper-V、Docker 和 Docker Compose。
2. 下载并启动服务
使用以下命令下载 docker-compose.yml
文件并启动服务:
# 设置 HOME 环境变量(仅 Windows 用户需要执行此命令)
# set HOME=%USERPROFILE%
curl -sSL https://raw.githubusercontent.com/OpenSPG/openspg/refs/heads/master/dev/release/docker-compose-west.yml -o docker-compose-west.yml
docker compose -f docker-compose-west.yml up -d
3. 使用 KAG 产品
在浏览器中访问 KAG 产品的默认 URL:http://127.0.0.1:8887。
资源
- 项目官网:https://spg.openkg.cn/en-US
- GitHub 仓库:https://github.com/OpenSPG/KAG
- arXiv 技术论文:https://arxiv.org/pdf/2409.13731
❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日分享大模型与 AI 领域的最新开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术,欢迎关注我哦!
🥦 微信公众号|搜一搜:蚝油菜花 🥦