Linux:进程间通信(共享内存详细讲解以及小项目使用和相关指令、消息队列、信号量)

简介: 通过上述讲解和代码示例,您可以理解和实现Linux系统中的进程间通信机制,包括共享内存、消息队列和信号量。这些机制在实际开发中非常重要,能够提高系统的并发处理能力和数据通信效率。希望本文能为您的学习和开发提供实用的指导和帮助。

在Linux系统中,进程间通信(IPC, Inter-Process Communication)是指多个进程之间的数据交换和同步手段。常见的IPC机制包括共享内存、消息队列和信号量。本文将详细讲解这三种IPC机制,并提供小项目示例和相关指令。

一、共享内存

共享内存是最快的IPC机制,因为它允许多个进程直接访问同一块内存区域。共享内存的使用涉及几个系统调用:shmgetshmatshmdtshmctl

1.1 创建和附加共享内存

#include <sys/ipc.h>
#include <sys/shm.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define SHM_SIZE 1024  // 共享内存大小

int main() {
    key_t key = ftok("shmfile", 65);  // 生成唯一键值
    int shmid = shmget(key, SHM_SIZE, 0666|IPC_CREAT);  // 创建共享内存
    char *str = (char*) shmat(shmid, (void*)0, 0);  // 连接共享内存

    printf("Write Data: ");
    fgets(str, SHM_SIZE, stdin);

    printf("Data written in memory: %s\n", str);
    shmdt(str);  // 分离共享内存

    return 0;
}
​

1.2 读取共享内存

#include <sys/ipc.h>
#include <sys/shm.h>
#include <stdio.h>
#include <stdlib.h>

#define SHM_SIZE 1024  // 共享内存大小

int main() {
    key_t key = ftok("shmfile", 65);  // 生成唯一键值
    int shmid = shmget(key, SHM_SIZE, 0666|IPC_CREAT);  // 获取共享内存ID
    char *str = (char*) shmat(shmid, (void*)0, 0);  // 连接共享内存

    printf("Data read from memory: %s\n", str);
    shmdt(str);  // 分离共享内存
    shmctl(shmid, IPC_RMID, NULL);  // 销毁共享内存

    return 0;
}
​

1.3 相关指令

  • ipcs:显示当前系统的IPC设施状态。
  • ipcrm:删除指定的IPC对象。

二、消息队列

消息队列允许进程以消息的形式进行通信,每个消息都有一个类型标识符。消息队列的相关系统调用包括 msggetmsgsndmsgrcvmsgctl

2.1 发送消息

#include <sys/ipc.h>
#include <sys/msg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

struct mesg_buffer {
    long mesg_type;
    char mesg_text[100];
} message;

int main() {
    key_t key = ftok("msgfile", 65);  // 生成唯一键值
    int msgid = msgget(key, 0666 | IPC_CREAT);  // 创建消息队列

    message.mesg_type = 1;
    printf("Write Data: ");
    fgets(message.mesg_text, 100, stdin);

    msgsnd(msgid, &message, sizeof(message), 0);  // 发送消息

    printf("Data send is : %s\n", message.mesg_text);

    return 0;
}
​

2.2 接收消息

#include <sys/ipc.h>
#include <sys/msg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

struct mesg_buffer {
    long mesg_type;
    char mesg_text[100];
} message;

int main() {
    key_t key = ftok("msgfile", 65);  // 生成唯一键值
    int msgid = msgget(key, 0666 | IPC_CREAT);  // 获取消息队列ID

    msgrcv(msgid, &message, sizeof(message), 1, 0);  // 接收消息

    printf("Data Received is : %s\n", message.mesg_text);

    msgctl(msgid, IPC_RMID, NULL);  // 销毁消息队列

    return 0;
}
​

2.3 相关指令

  • ipcs -q:显示当前系统的消息队列。
  • ipcrm -q <msgid>:删除指定的消息队列。

三、信号量

信号量是用于进程同步的IPC机制。信号量的相关系统调用包括 semgetsemopsemctl

3.1 创建和初始化信号量

#include <sys/ipc.h>
#include <sys/sem.h>
#include <stdio.h>
#include <stdlib.h>

union semun {
    int val;
    struct semid_ds *buf;
    unsigned short *array;
};

int main() {
    key_t key = ftok("semfile", 65);  // 生成唯一键值
    int semid = semget(key, 1, 0666 | IPC_CREAT);  // 创建信号量集

    union semun sem_union;
    sem_union.val = 1;
    semctl(semid, 0, SETVAL, sem_union);  // 初始化信号量

    return 0;
}
​

3.2 P操作和V操作

#include <sys/ipc.h>
#include <sys/sem.h>
#include <stdio.h>
#include <stdlib.h>

void sem_op(int semid, int op) {
    struct sembuf sb;
    sb.sem_num = 0;
    sb.sem_op = op;
    sb.sem_flg = 0;
    semop(semid, &sb, 1);
}

int main() {
    key_t key = ftok("semfile", 65);  // 生成唯一键值
    int semid = semget(key, 1, 0666);  // 获取信号量ID

    printf("Waiting for semaphore...\n");
    sem_op(semid, -1);  // P操作
    printf("Enter critical section...\n");

    // 进入临界区
    sleep(5);  // 模拟临界区操作
    printf("Leaving critical section...\n");

    sem_op(semid, 1);  // V操作

    return 0;
}
​

3.3 相关指令

  • ipcs -s:显示当前系统的信号量集。
  • ipcrm -s <semid>:删除指定的信号量集。

四、小项目:生产者-消费者问题

4.1 生产者代码

#include <sys/ipc.h>
#include <sys/shm.h>
#include <sys/sem.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>

#define SHM_SIZE 1024

void sem_op(int semid, int op) {
    struct sembuf sb;
    sb.sem_num = 0;
    sb.sem_op = op;
    sb.sem_flg = 0;
    semop(semid, &sb, 1);
}

int main() {
    key_t key = ftok("shmfile", 65);
    int shmid = shmget(key, SHM_SIZE, 0666 | IPC_CREAT);
    char *str = (char*) shmat(shmid, (void*)0, 0);

    key_t sem_key = ftok("semfile", 65);
    int semid = semget(sem_key, 1, 0666 | IPC_CREAT);
    union semun sem_union;
    sem_union.val = 1;
    semctl(semid, 0, SETVAL, sem_union);

    while (1) {
        sem_op(semid, -1);
        printf("Write Data: ");
        fgets(str, SHM_SIZE, stdin);
        sem_op(semid, 1);
        sleep(1);
    }

    shmdt(str);
    shmctl(shmid, IPC_RMID, NULL);
    semctl(semid, 0, IPC_RMID);

    return 0;
}
​

4.2 消费者代码

#include <sys/ipc.h>
#include <sys/shm.h>
#include <sys/sem.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>

#define SHM_SIZE 1024

void sem_op(int semid, int op) {
    struct sembuf sb;
    sb.sem_num = 0;
    sb.sem_op = op;
    sb.sem_flg = 0;
    semop(semid, &sb, 1);
}

int main() {
    key_t key = ftok("shmfile", 65);
    int shmid = shmget(key, SHM_SIZE, 0666 | IPC_CREAT);
    char *str = (char*) shmat(shmid, (void*)0, 0);

    key_t sem_key = ftok("semfile", 65);


 int semid = semget(sem_key, 1, 0666 | IPC_CREAT);

    while (1) {
        sem_op(semid, -1);
        printf("Data read from memory: %s\n", str);
        sem_op(semid, 1);
        sleep(1);
    }

    shmdt(str);
    shmctl(shmid, IPC_RMID, NULL);
    semctl(semid, 0, IPC_RMID);

    return 0;
}
​

分析说明表

IPC机制 描述
共享内存 允许多个进程共享同一块内存,速度最快,但需要同步机制防止数据冲突。
消息队列 通过消息形式在进程间传递数据,适合异步通信,支持消息优先级。
信号量 用于进程间同步,控制对公共资源的访问,通过P操作和V操作实现。
生产者-消费者 一个典型的同步问题,通过共享内存和信号量实现生产者和消费者的协作。

思维导图

进程间通信
|
|-- 共享内存
|   |-- 创建和附加共享内存
|   |-- 读取共享内存
|   |-- 相关指令
|
|-- 消息队列
|   |-- 发送消息
|   |-- 接收消息
|   |-- 相关指令
|
|-- 信号量
|   |-- 创建和初始化信号量
|   |-- P操作和V操作
|   |-- 相关指令
|
|-- 生产者-消费者
|   |-- 生产者代码
|   |-- 消费者代码
|
|-- 分析说明表
​

通过上述讲解和代码示例,您可以理解和实现Linux系统中的进程间通信机制,包括共享内存、消息队列和信号量。这些机制在实际开发中非常重要,能够提高系统的并发处理能力和数据通信效率。希望本文能为您的学习和开发提供实用的指导和帮助。

目录
相关文章
|
6月前
|
消息中间件 Linux
【Linux】进程间通信——system V(共享内存 | 消息队列 | 信号量)(下)
【Linux】进程间通信——system V(共享内存 | 消息队列 | 信号量)(下)
81 0
|
6月前
|
消息中间件 存储 Linux
【Linux】进程间通信——system V(共享内存 | 消息队列 | 信号量)(上)
【Linux】进程间通信——system V(共享内存 | 消息队列 | 信号量)(上)
93 0
|
7月前
|
Linux 芯片
一篇文章讲明白Linux内核态和用户态共享内存方式通信
一篇文章讲明白Linux内核态和用户态共享内存方式通信
91 0
|
8月前
|
消息中间件 算法 Linux
【Linux 系统】进程间通信(共享内存、消息队列、信号量)(上)
【Linux 系统】进程间通信(共享内存、消息队列、信号量)(上)
|
8月前
|
消息中间件 存储 安全
【Linux 系统】进程间通信(共享内存、消息队列、信号量)(下)
【Linux 系统】进程间通信(共享内存、消息队列、信号量)(下)
|
8月前
|
消息中间件 Linux API
Linux进程间通信(IPC) Linux消息队列:讲解POSIX消息队列在Linux系统进程间通信中的应用和实践
Linux进程间通信(IPC) Linux消息队列:讲解POSIX消息队列在Linux系统进程间通信中的应用和实践
312 1
Linux进程间通信(IPC) Linux消息队列:讲解POSIX消息队列在Linux系统进程间通信中的应用和实践
|
8月前
|
存储 Linux 程序员
Linux进程间通信(IPC)教程 Linux信号量:讲解POSIX信号量在Linux系统进程间通信中的编程实践
Linux进程间通信(IPC)教程 Linux信号量:讲解POSIX信号量在Linux系统进程间通信中的编程实践
151 1
|
消息中间件 Unix Linux
【Linux学习】进程间通信的方式(匿名管道、命名管道、共享内存)1
【Linux学习】进程间通信的方式(匿名管道、命名管道、共享内存)
480 0
|
存储 消息中间件 监控
【Linux学习】进程间通信的方式(匿名管道、命名管道、共享内存)2
【Linux学习】进程间通信的方式(匿名管道、命名管道、共享内存)
85 0
|
消息中间件 缓存 算法
【Linux】进程间通信——system V共享内存 | 消息队列 | 信号量
system V共享内存、system V消息队列和system V信号量的介绍。