《主动式智能导购AI助手构建》解决方案评测

本文涉及的产品
函数计算FC,每月15万CU 3个月
简介: 通过函数计算应用模板,您可以快速搭建一个集成智能导购的网站,实现多轮交互收集用户商品偏好,默认支持手机、电视和冰箱。部署时填写API Key,创建并部署环境(约1分钟)。部署完成后,访问示例网站域名确认成功。智能导购会根据用户意图分类并传递给相应商品导购Agent,返回商品信息。您还可以选择集成百炼应用进行智能商品检索。此架构适用于智能问诊、求职推荐等场景。在生产环境中,可修改知识库和源码以适配具体需求,并通过优化提示词和私有知识库来持续改进回复效果。

{102A12FA-9D87-47EC-8D4C-975106678AFD}.png
{0CB4275E-22AC-410D-A7D0-F10D497C34C9}.png
{569F6D22-AF40-49C9-8D06-89BBE7E487A9}.png
{72F6ACF9-78FE-42AD-990E-8E29255AB1DF}.png
{CF9AE1CB-A86F-4C20-9688-4A3B633AA056}.png
{58ADBA55-2119-473F-9A30-ECCAE330BE68}.png

  1. 创建函数计算应用
    您可以访问我们准备好的函数计算应用模板,快速搭建一个集成智能导购的网站。智能导购可以通过多轮交互,收集顾客心仪的商品信息,默认商品包含手机、电视与冰箱。

参考下图选择直接部署并填写您的 API Key,您可以访问我的API-KEY来获取您的API Key。其它表单项保持默认,单击页面左下角的创建并部署默认环境,等待项目部署完成即可(预计耗时 1 分钟)。

百炼应用ID(可选): 如果您计划使用百炼应用进行商品智能检索,请在创建应用时提供百炼应用ID,获取方式请参考创建百炼商品检索应用并集成到智能导购中(可选)。 如果您计划使用商品数据库检索,此项可留空。 如果您决定后期集成百炼应用,可在创建函数计算应用后,通过环境变量配置方式添加您的百炼应用ID。
{907CD8BD-C265-4EB5-BDFD-BF7894DE2657}.png

  1. 访问网站
    在函数计算应用部署完成后,您可以在跳转后的页面的环境信息中找到示例网站的访问域名,单击即可查看,确认示例网站已经部署成功。
    {18188040-F05D-45DC-85B4-1D5F79A2A642}.png
  2. 验证智能导购效果
    智能导购会主动询问并收集需要的商品参数信息;收集完成后打印出参数信息。
    {B66D20FC-441F-4BB7-871F-E01F53CED6DE}.png
    在导购收集到顾客的商品参数偏好后,您可以通过查询商品数据库来返回商品。如果您想通过百炼应用来进行智能商品检索,请参考创建百炼商品检索应用并集成到智能导购中(可选)。
    关键代码解释
    规划助理(Router Agent)
    上述示例程序中用于意图识别的模块是规划助理(Router Agent)。规划助理根据用户意图进行分类后,将用户的问题按需传递指定的商品导购 Agent。
    ROUTER_AGENT_INSTRUCTION = """你是一个问题分类器
    请根结合用户的提问和上下文判断用户是希望了解的商品具体类型。

注意,你的输出结果只能是下面列表中的某一个,不能包含任何其他信息:

  • 手机(用户在当前输入中提到要买手机,或正在进行手机参数的收集)
  • 电视机(用户在当前输入中提到要买电视机,或正在进行电视参数的收集)
  • 冰箱(用户在当前输入中提到要买冰箱,或正在进行冰箱参数的收集)
  • 其他(比如用户要买非上述三个产品、用户要买不止一个产品等情况)

输出示例:
手机
"""
router_agent = Assistants.create(
model="qwen-plus",
name='引导员,路由器',
description='你是一个商城的引导员,负责将用户问题路由到不同的导购员。',
instructions=ROUTER_AGENT_INSTRUCTION
)
选择不同的 Agent 进行回复
agent_map = {
"意图分类": router_agent.id,
"手机": mobilephone_guide_agent.id,
"冰箱": fridge_guide_agent.id,
"电视机": tv_guide_agent.id
}

def chat(input_prompt, thread_id):

# 首先根据用户问题及 thread 中存储的历史对话识别用户意图
router_agent_response = get_agent_response(agent_name="意图分类", input_prompt=input_prompt, thread_id=thread_id)
classification_result = parse_streaming_response(router_agent_response)

response_json = {
    "content": "",
}
# 如果分类识别为其他时,引导用户调整提问方式
if classification_result == "其他":
    return_json["content"] = "不好意思,我没有理解您的问题,能换个表述方式么?"
    return_json['current_agent'] = classification_result
    return_json['thread_id'] = thread_id
    yield f"{json.dumps(return_json)}\n\n"
# 如果分类是手机、电视机或冰箱时,让对应的 Agent 进行回复
else:
      agent_response = get_agent_response(agent_name=classification_result, input_prompt=input_prompt, thread_id=thread_id)
    for chunk in agent_response:
        response_json["content"] = chunk
        response_json['current_agent'] = classification_result
        response_json['thread_id'] = thread_id
        yield f"{json.dumps(response_json)}\n\n"

总结
通过以上步骤,您搭建了一个集成了智能导购的网站,可以全天候向顾客提供商品推荐服务。本案例中的架构也适用于智能问诊、求职推荐等场景。

应用于生产环境
为了将智能导购适配到您的产品并应用于生产环境中,您可以:

修改知识库。将您的商品信息作为知识库,同时您也可以在商品参数中添加商品详情页或下单页的链接,方便顾客进行浏览与下单。您也可以通过已有的数据库或其它服务中进行商品检索。

修改源码中的prompt来适配到您的产品中。修改源码的步骤为:

回到应用详情页,在环境详情的最底部找到函数资源,点击函数名称,进入函数详情页。

进入函数详情页后,在代码视图中找到prompt.py、agents.py文件并进行修改。

prompt.py定义了agent的功能以及询问参数的顺序等信息;agents.py创建了agent,以及生成回复的函数。
单击部署代码,等待部署完成即可。

参考10分钟给网站添加AI助手中的应用于生产环境部分,将智能导购集成到您的网站中。

持续改进
建议在正式上线智能导购前,组织业务人员一起参与应用评测,确保智能导购的回复效果符合预期。如果不符合预期,可以通过优化提示词、完善补充私有知识等方法来改进回答效果。

大模型课程
系统体验的改进优化永远没有终点,您可以考虑学习并通过阿里云大模型 ACA 认证,该认证配套的免费课程能帮助您进一步了解大模型的能力和应用场景,以及如何优化通过大模型的应用效果。

相关实践学习
【文生图】一键部署Stable Diffusion基于函数计算
本实验教你如何在函数计算FC上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。函数计算提供一定的免费额度供用户使用。本实验答疑钉钉群:29290019867
建立 Serverless 思维
本课程包括: Serverless 应用引擎的概念, 为开发者带来的实际价值, 以及让您了解常见的 Serverless 架构模式
目录
相关文章
|
4天前
|
机器学习/深度学习 人工智能 算法
FinRobot:开源的金融专业 AI Agent,提供市场预测、报告分析和交易策略等金融解决方案
FinRobot 是一个开源的 AI Agent 平台,专注于金融领域的应用,通过大型语言模型(LLMs)构建复杂的金融分析和决策工具,提供市场预测、文档分析和交易策略等多种功能。
50 13
FinRobot:开源的金融专业 AI Agent,提供市场预测、报告分析和交易策略等金融解决方案
|
3天前
|
数据采集 人工智能 分布式计算
MaxFrame:链接大数据与AI的高效分布式计算框架深度评测与实践!
阿里云推出的MaxFrame是链接大数据与AI的分布式Python计算框架,提供类似Pandas的操作接口和分布式处理能力。本文从部署、功能验证到实际场景全面评测MaxFrame,涵盖分布式Pandas操作、大语言模型数据预处理及企业级应用。结果显示,MaxFrame在处理大规模数据时性能显著提升,代码兼容性强,适合从数据清洗到训练数据生成的全链路场景...
14 5
MaxFrame:链接大数据与AI的高效分布式计算框架深度评测与实践!
|
3天前
|
人工智能 搜索推荐 Serverless
打造智能购物新体验:主动式智能导购AI助手解决方案评测
阿里云推出的《主动式智能导购AI助手构建》解决方案,基于百炼大模型和函数计算,采用Multi-Agent架构,提供个性化、智能化的购物体验。系统具备主动交互、精准推荐、自动化架构等亮点,支持快速部署和生产环境应用。评测结果显示,该方案在功能效果和架构设计上表现出色,但仍需优化文档和技术细节。欢迎参加官方评测活动... 详细评测及参与方式请参考:[链接](https://developer.aliyun.com/topic/build-an-ai-shopping-assistant?spm=a2c6h.12873639.article-detail.17.13902d93dZhiyK)。
20 1
打造智能购物新体验:主动式智能导购AI助手解决方案评测
|
2天前
|
人工智能 搜索推荐 算法
解决方案评测|主动式智能导购AI助手构建
阿里云的主动式智能导购AI助手是电商商家提升用户体验和销量的利器。它能实时分析用户行为,提供个性化推荐,支持多渠道无缝对接,并具备语音和文本交互功能。通过注册阿里云账号、开通服务、配置项目、设置推荐策略、集成到平台并测试优化,商家可以轻松部署这一工具。关键代码示例帮助理解API对接和数据处理。建议增强个性化推荐算法、优化交互体验并增加自定义选项,以进一步提升效果。
34 11
|
3天前
|
人工智能 供应链 安全
面向高效大模型推理的软硬协同加速技术 多元化 AI 硬件引入评测体系
本文介绍了AI硬件评测体系的三大核心方面:统一评测标准、平台化与工具化、多维度数据消费链路。通过标准化评测流程,涵盖硬件性能、模型推理和训练性能,确保评测结果客观透明。平台化实现资源管理与任务调度,支持大规模周期性评测;工具化则应对紧急场景,快速适配并生成报告。最后,多维度数据消费链路将评测数据结构化保存,服务于综合通用、特定业务及专业性能分析等场景,帮助用户更好地理解和使用AI硬件。
|
10天前
|
机器学习/深度学习 新零售 人工智能
基于阿里云AI购物助手解决方案的深度评测
阿里云推出的AI购物助手解决方案,采用模块化架构,涵盖智能对话引擎、商品知识图谱和个性化推荐引擎。评测显示其在智能咨询问答、个性化推荐和多模态交互方面表现出色,准确率高且响应迅速。改进建议包括提升复杂问题理解、简化推荐过程及优化话术。总体评价认为该方案技术先进,应用效果好,能显著提升电商购物体验并降低运营成本。
48 0
|
4月前
|
人工智能 运维 大数据
阿里云“触手可及,函数计算玩转 AI 大模型”解决方案评测报告
阿里云“触手可及,函数计算玩转 AI 大模型”解决方案评测报告
122 2
|
存储 机器学习/深度学习 人工智能
先进级!阿里云大数据+AI平台通过信通院数据平台整体解决方案最高等级评测
近日,在中国信通院组织的第十四批“可信大数据”产品能力评测中,阿里云计算有限公司顺利完成了首个数据平台整体解决方案评测,达到最高等级先进级(3级)。该评测依据 《集成化大数据平台能力分级要求》进行,共涉及10个能力域,44个能力项和577项技术要求。全方位覆盖大数据平台的数据存储、数据集成、数据管理与治理、数据开发、数据处理及分析、数据服务、高可用、平台管理、系统运维、数据安全等能力。
1708 0
先进级!阿里云大数据+AI平台通过信通院数据平台整体解决方案最高等级评测
|
传感器 人工智能 城市大脑
阿里云AI | 畜牧养殖业综合解决方案
本文介绍了阿里云AI | 畜牧养殖业综合解决方案的方案概述以及业务价值。
阿里云AI | 畜牧养殖业综合解决方案

热门文章

最新文章