基于GA遗传优化的WSN网络最优节点部署算法matlab仿真

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: 本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。

1.程序功能描述
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真,通过遗传优化,获得最少得节点数量,达到最大的节点覆盖率。

2.测试软件版本以及运行结果展示
MATLAB2022A版本运行

初始节点数量15:

1.jpeg
2.jpeg
3.jpeg

初始节点数量25:

4.jpeg
5.jpeg
6.jpeg

初始节点数量40:

7.jpeg
8.jpeg
9.jpeg

3.核心程序

```% 获取最佳解并绘制优化后的节点部署
[V,I] = min(Jit1);
Xbest = Xga(I,1:Nnode);
Ybest = Xga(I,1+Nnode:Nnode+Nnode);
Nbest = round(Xga(I,end));

subplot(122);

for i=1:Nbest
funccover([Xbest(i),Ybest(i)],rd,1000,'r');
hold on
x1
=Xbest(i)+rdcos(w);
y1_=Ybest(i)+rd
sin(w);
fill(x1,y1,'g','FaceAlpha',0.3)
plot(Xbest(i),Ybest(i),'b.');
hold on
i=i+1;
end
axis([0,width,0,high]);

[Coverage1,Coverage2] = func_fitness(Xbest,Ybest,Nbest);
title(['优化后','WSN节点数量:',num2str(Nbest),',WSN覆盖率:',num2str(100*Coverage1),'%']);

figure;
subplot(121);
bar([Nnode,Nbest]);
xlabel('1:优化前, 2:优化后');
ylabel('节点数量');

subplot(122);
bar([100Coverage1b,100Coverage1]);
xlabel('1:优化前, 2:优化后');
ylabel('覆盖率%');

% 绘制适应度变化曲线
figure
plot(Favg,'b','linewidth',1); % 平均适应度曲线
xlabel('迭代次数');
ylabel('适应度值');
grid on
51

```

4.本算法原理
无线传感器网络(Wireless Sensor Network, WSN)的最优节点部署问题旨在通过合理配置传感器节点的位置,以达到特定的网络覆盖或其他性能指标的最大化。遗传算法(Genetic Algorithm, GA)作为一种启发式优化算法,能够有效解决这类复杂的优化问题。

4.1 遗传算法基础
遗传算法灵感来源于自然界生物进化过程中的遗传和自然选择机制,主要包括以下几个核心步骤:初始化、选择、交叉、变异。

初始化:随机生成初始种群,每个个体代表一个可能的解决方案,即一组传感器节点的位置配置。
评估:根据一定的评价函数(fitness function)计算每个个体的适应度,该函数反映了该解决方案满足目标性能指标的程度。
选择:根据个体的适应度进行选择,适应度高的个体有更高的概率被选中作为“父母”参与下一代的繁殖。
交叉:通过交叉操作交换“父母”个体的部分基因,生成新的“子代”个体,以引入多样性。
变异:以一定概率对子代个体的某些基因进行随机修改,进一步增加种群的多样性。
4.2 WSN节点部署问题建模
设WSN的监测区域为 D⊂R2,需要部署 N 个传感器节点,每个节点 i 的位置为pi​=(xi​,yi​)∈D。假设每个节点的感知范围为R,覆盖目标区域的期望程度可以用覆盖度C 来衡量,通常定义为被至少一个节点覆盖的区域面积与整个监测区域面积的比值。

4.3 适应度函数设计
适应度函数F(p1​,p2​,...,pN​) 应反映网络的覆盖效率及可能的其他约束条件。一个简单的覆盖度最大化适应度函数可以表示为:

8318fbbf9a295f0f9abccfc7b223fe6d_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

在实际设计过程中,一般采用网格化方式,来计算覆盖率。

相关文章
|
5天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
3天前
|
算法
基于爬山法MPPT最大功率跟踪算法的光伏发电系统simulink建模与仿真
本课题基于爬山法MPPT算法,对光伏发电系统进行Simulink建模与仿真。使用MATLAB2022a版本,通过调整光伏电池的工作状态以实现最大功率输出。爬山法通过逐步优化工作点,确保光伏系统在不同条件下均能接近最大功率点。仿真结果显示该方法的有效性,验证了模型的正确性和可行性。
|
4天前
|
算法
基于梯度流的扩散映射卡尔曼滤波算法的信号预处理matlab仿真
本项目基于梯度流的扩散映射卡尔曼滤波算法(GFDMKF),用于信号预处理的MATLAB仿真。通过设置不同噪声大小,测试滤波效果。核心代码实现数据加载、含噪信号生成、扩散映射构建及DMK滤波器应用,并展示含噪与无噪信号及滤波结果的对比图。GFDMKF结合非线性流形学习与经典卡尔曼滤波,提高对非线性高维信号的滤波和跟踪性能。 **主要步骤:** 1. 加载数据并生成含噪测量值。 2. 使用扩散映射捕捉低维流形结构。 3. 应用DMK滤波器进行状态估计。 4. 绘制不同SNR下的轨迹示例。
|
3天前
|
算法 5G
基于MSWA相继加权平均的交通流量分配算法matlab仿真
本项目基于MSWA(Modified Successive Weighted Averaging)相继加权平均算法,对包含6个节点、11个路段和9个OD对的交通网络进行流量分配仿真。通过MATLAB2022A实现,核心代码展示了迭代过程及路径收敛曲线。MSWA算法在经典的SUE模型基础上改进,引入动态权重策略,提高分配结果的稳定性和收敛效率。该项目旨在预测和分析城市路网中的交通流量分布,达到用户均衡状态,确保没有出行者能通过改变路径减少个人旅行成本。仿真结果显示了27条无折返有效路径的流量分配情况。
|
2天前
|
算法
基于RRT优化算法的机械臂路径规划和避障matlab仿真
本课题基于RRT优化算法实现机械臂路径规划与避障。通过MATLAB2022a进行仿真,先利用RRT算法计算避障路径,再将路径平滑处理,并转换为机械臂的关节角度序列,确保机械臂在复杂环境中无碰撞移动。系统原理包括随机生成树结构探索空间、直线扩展与障碍物检测等步骤,最终实现高效路径规划。
|
9天前
|
机器学习/深度学习 算法 索引
单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA
本项目使用FW烟花优化算法求解单目标问题,并在MATLAB2022A中实现仿真,对比PSO和GA的性能。核心代码展示了适应度计算、火花生成及位置约束等关键步骤。最终通过收敛曲线对比三种算法的优化效果。烟花优化算法模拟烟花爆炸过程,探索搜索空间,寻找全局最优解,适用于复杂非线性问题。PSO和GA则分别适合快速收敛和大解空间的问题。参数调整和算法特性分析显示了各自的优势与局限。
|
1月前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
150 15
|
3月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
该算法结合了遗传算法(GA)与分组卷积神经网络(GroupCNN),利用GA优化GroupCNN的网络结构和超参数,提升时间序列预测精度与效率。遗传算法通过模拟自然选择过程中的选择、交叉和变异操作寻找最优解;分组卷积则有效减少了计算成本和参数数量。本项目使用MATLAB2022A实现,并提供完整代码及视频教程。注意:展示图含水印,完整程序运行无水印。
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA-PSO-SVM算法的混沌背景下微弱信号检测matlab仿真
本项目基于MATLAB 2022a,展示了SVM、PSO、GA-PSO-SVM在混沌背景下微弱信号检测中的性能对比。核心程序包含详细中文注释和操作步骤视频。GA-PSO-SVM算法通过遗传算法和粒子群优化算法优化SVM参数,提高信号检测的准确性和鲁棒性,尤其适用于低信噪比环境。
|
3月前
|
算法 决策智能
基于GA-PSO遗传粒子群混合优化算法的TSP问题求解matlab仿真
本文介绍了基于GA-PSO遗传粒子群混合优化算法解决旅行商问题(TSP)的方法。TSP旨在寻找访问一系列城市并返回起点的最短路径,属于NP难问题。文中详细阐述了遗传算法(GA)和粒子群优化算法(PSO)的基本原理及其在TSP中的应用,展示了如何通过编码、选择、交叉、变异及速度和位置更新等操作优化路径。算法在MATLAB2022a上实现,实验结果表明该方法能有效提高求解效率和解的质量。