FireCrawl:开源 AI 网络爬虫工具,自动爬取网站及子页面内容,预处理为结构化数据

本文涉及的产品
NLP自然语言处理_基础版,每接口每天50万次
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_高级版,每接口累计50万次
简介: FireCrawl 是一款开源的 AI 网络爬虫工具,专为处理动态网页内容、自动爬取网站及子页面而设计,支持多种数据提取和输出格式。

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


🚀 快速阅读

  1. 功能:FireCrawl 支持自动爬取网站及其子页面,抓取单个 URL 内容,并提取结构化数据。
  2. 技术:基于网络爬虫技术,处理动态内容,并利用大型语言模型进行数据提取。
  3. 应用:适用于大模型训练、检索增强生成(RAG)、数据驱动开发等多种场景。

正文(附运行示例)

FireCrawl 是什么

公众号: 蚝油菜花 - firecrawl

FireCrawl 是一款开源的 AI 网络爬虫工具,专门用于 Web 数据提取,能够将网页内容转换为 Markdown 或其他结构化数据。它具备强大的抓取能力,支持动态网页内容的处理,并提供智能爬取状态管理和多样的输出格式。

FireCrawl 集成了 LLM Extract 功能,利用大型语言模型快速完成数据提取,适用于大模型训练、检索增强生成(RAG)、数据驱动开发项目等多种场景。

FireCrawl 的主要功能

  1. 爬取:自动爬取网站及其所有可访问的子页面,将内容转换为 LLM 就绪格式。
  2. 抓取:抓取单个 URL 的内容,并以 Markdown、结构化数据等格式提供。
  3. 映射:输入网站 URL,快速获取网站上的所有链接。
  4. LLM 提取:从抓取的页面中提取结构化数据。
  5. 批量抓取:同时抓取多个 URL。
  6. 网页交互:在抓取内容之前,对网页执行点击、滚动、输入等操作。
  7. 搜索:搜索网络,获取最相关的结果,并抓取页面内容。

FireCrawl 的技术原理

  1. 网页爬取:利用网络爬虫技术,根据提供的 URL 递归访问网站页面。
  2. 内容解析:解析网页的 HTML 内容,提取所需数据。
  3. LLM 就绪格式:将提取的内容转换成适合大型语言模型处理的格式,如 Markdown 或结构化数据。
  4. 动态内容处理:处理 JavaScript 渲染的动态内容,确保能抓取由用户交互生成的数据。
  5. 反反爬虫技术:使用代理、自定义头部等技术绕过网站的反爬虫机制。
  6. 数据提取与结构化:基于自然语言处理技术,从非结构化的网页内容中提取结构化数据。

如何运行 FireCrawl

1. 安装 Python SDK

pip install firecrawl-py
AI 代码解读

2. 爬取网站

from firecrawl.firecrawl import FirecrawlApp

app = FirecrawlApp(api_key="fc-YOUR_API_KEY")

# 爬取网站
crawl_status = app.crawl_url(
  'https://firecrawl.dev', 
  params={
   
    'limit': 100, 
    'scrapeOptions': {
   'formats': ['markdown', 'html']}
  },
  poll_interval=30
)
print(crawl_status)
AI 代码解读

3. 提取结构化数据

from firecrawl.firecrawl import FirecrawlApp
from pydantic import BaseModel, Field

app = FirecrawlApp(api_key="fc-YOUR_API_KEY")

class ArticleSchema(BaseModel):
    title: str
    points: int
    by: str
    commentsURL: str

class TopArticlesSchema(BaseModel):
    top: List[ArticleSchema] = Field(..., max_items=5, description="Top 5 stories")

data = app.scrape_url('https://news.ycombinator.com', {
   
    'formats': ['extract'],
    'extract': {
   
        'schema': TopArticlesSchema.model_json_schema()
    }
})
print(data["extract"])
AI 代码解读

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

目录
打赏
0
21
19
3
401
分享
相关文章
企业AI落地开源五剑客:Open-WebUI、Dify、RAGFlow、FastGPT、n8n
在AI技术迅猛发展的今天,企业常面临数据安全、技术门槛和系统整合等难题。本文介绍了五款开源工具——Open WebUI、Dify、RAGFlow、FastGPT和n8n,它们以低成本、私有化部署和模块化扩展的优势,助力企业构建AI能力闭环,覆盖交互、生成、知识处理与流程自动化等多个环节,推动AI真正落地应用。
小红书图文生成器,小红书AI图文生成工具,python版本软件
Pillow库自动生成符合平台尺寸要求的配图7;3)利用Playwright实现自动化发布流程6。
16个AI Logo 设计工具大盘点:技术解析、Logo格式对比与实用推荐
本文介绍了品牌标志(Logo)的重要性,并盘点了多款免费且好用的 Logo 生成工具,分析其输出尺寸、格式及适用场景,帮助无设计基础的用户选择合适工具,高效制作满足不同用途的 Logo。
102 0
AI大模型训练管理工具:千亿参数时代的指挥中枢
本内容揭示了大模型训练中三大核心挑战:实验复现难、资源利用率低、合规风险高,并提出“三维控制塔”解决方案,涵盖实验管理、资源调度与合规追踪。推荐Immuta + 板栗看板等工具组合助力不同规模团队实现高效、合规、低成本的AI训练。
AI时代KPI管理全指南:2025年六项工具横向测评与最佳实践
KPI(关键绩效指标)管理正从传统考核向融合目标、过程与数据的智能化系统演进。本文详解其技术架构与实施路径,解析主流工具功能特性,提供科学选型建议。内容涵盖KPI体系设计、数据采集、分析反馈及热点问题解决方案,助力企业构建数据驱动的高效绩效管理系统,实现战略闭环管理。
147 0
高校实验实训课程开发:基于现有的硬件基础和开源能力研发最前沿的AI实验课程
更多基于学校现有硬件基础:企业需求场景的开发和发展,更加注重上层数据和应用,各类工具软件的出现,极大提升了各类硬件的应用价值。我们看到各类硬件厂商,想方设法把硬件卖给学校,但是很多硬件不是在那里尘封,就是寥寥无几的使用场景,我们希望基于学校现有的硬件基础去开发更多面向不同行业或专业的实验实训课程,物尽其用。基于学校现有的硬件,集约开发,极大降低硬件投入成本。
58 7
VMware Aria Operations for Networks 6.14 - 网络和应用监控工具
VMware Aria Operations for Networks 6.14 - 网络和应用监控工具
38 0
VMware Aria Operations for Networks 6.14 - 网络和应用监控工具
猫头虎 推荐:国产开源AI工具 爱派(AiPy)|支持本地部署、自动化操作本地文件的AI办公神器
爱派(AiPy)是一款国产开源AI工具,支持本地部署与自动化操作,助力数据处理与办公效率提升。基于Python Use理念,AiPy让AI直接控制本地文件,简化繁琐任务,提供高效智能的解决方案,适用于数据工程师、分析师及日常办公用户。
275 0
推荐一款Python开源的AI自动化工具:Browser Use
Browser Use 是一款基于 Python 的开源 AI 自动化工具,融合大型语言模型与浏览器自动化技术,支持网页导航、数据抓取、智能决策等操作,适用于测试、爬虫、信息提取等多种场景。
280 2
推荐一款Python开源的AI自动化工具:Browser Use
无headers爬虫 vs 带headers爬虫:Python性能对比
无headers爬虫 vs 带headers爬虫:Python性能对比

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等