FireCrawl:开源 AI 网络爬虫工具,自动爬取网站及子页面内容,预处理为结构化数据

本文涉及的产品
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_高级版,每接口累计50万次
NLP自然语言处理_基础版,每接口每天50万次
简介: FireCrawl 是一款开源的 AI 网络爬虫工具,专为处理动态网页内容、自动爬取网站及子页面而设计,支持多种数据提取和输出格式。

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


🚀 快速阅读

  1. 功能:FireCrawl 支持自动爬取网站及其子页面,抓取单个 URL 内容,并提取结构化数据。
  2. 技术:基于网络爬虫技术,处理动态内容,并利用大型语言模型进行数据提取。
  3. 应用:适用于大模型训练、检索增强生成(RAG)、数据驱动开发等多种场景。

正文(附运行示例)

FireCrawl 是什么

公众号: 蚝油菜花 - firecrawl

FireCrawl 是一款开源的 AI 网络爬虫工具,专门用于 Web 数据提取,能够将网页内容转换为 Markdown 或其他结构化数据。它具备强大的抓取能力,支持动态网页内容的处理,并提供智能爬取状态管理和多样的输出格式。

FireCrawl 集成了 LLM Extract 功能,利用大型语言模型快速完成数据提取,适用于大模型训练、检索增强生成(RAG)、数据驱动开发项目等多种场景。

FireCrawl 的主要功能

  1. 爬取:自动爬取网站及其所有可访问的子页面,将内容转换为 LLM 就绪格式。
  2. 抓取:抓取单个 URL 的内容,并以 Markdown、结构化数据等格式提供。
  3. 映射:输入网站 URL,快速获取网站上的所有链接。
  4. LLM 提取:从抓取的页面中提取结构化数据。
  5. 批量抓取:同时抓取多个 URL。
  6. 网页交互:在抓取内容之前,对网页执行点击、滚动、输入等操作。
  7. 搜索:搜索网络,获取最相关的结果,并抓取页面内容。

FireCrawl 的技术原理

  1. 网页爬取:利用网络爬虫技术,根据提供的 URL 递归访问网站页面。
  2. 内容解析:解析网页的 HTML 内容,提取所需数据。
  3. LLM 就绪格式:将提取的内容转换成适合大型语言模型处理的格式,如 Markdown 或结构化数据。
  4. 动态内容处理:处理 JavaScript 渲染的动态内容,确保能抓取由用户交互生成的数据。
  5. 反反爬虫技术:使用代理、自定义头部等技术绕过网站的反爬虫机制。
  6. 数据提取与结构化:基于自然语言处理技术,从非结构化的网页内容中提取结构化数据。

如何运行 FireCrawl

1. 安装 Python SDK

pip install firecrawl-py
AI 代码解读

2. 爬取网站

from firecrawl.firecrawl import FirecrawlApp

app = FirecrawlApp(api_key="fc-YOUR_API_KEY")

# 爬取网站
crawl_status = app.crawl_url(
  'https://firecrawl.dev', 
  params={
   
    'limit': 100, 
    'scrapeOptions': {
   'formats': ['markdown', 'html']}
  },
  poll_interval=30
)
print(crawl_status)
AI 代码解读

3. 提取结构化数据

from firecrawl.firecrawl import FirecrawlApp
from pydantic import BaseModel, Field

app = FirecrawlApp(api_key="fc-YOUR_API_KEY")

class ArticleSchema(BaseModel):
    title: str
    points: int
    by: str
    commentsURL: str

class TopArticlesSchema(BaseModel):
    top: List[ArticleSchema] = Field(..., max_items=5, description="Top 5 stories")

data = app.scrape_url('https://news.ycombinator.com', {
   
    'formats': ['extract'],
    'extract': {
   
        'schema': TopArticlesSchema.model_json_schema()
    }
})
print(data["extract"])
AI 代码解读

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

目录
打赏
0
21
19
3
384
分享
相关文章
40.8K star!让AI帮你读懂整个互联网:Crawl4AI开源爬虫工具深度解析
Crawl4AI 是2025年GitHub上备受瞩目的开源网络爬虫工具,专为AI时代设计。它不仅能抓取网页内容,还能理解页面语义结构,生成适配大语言模型的训练数据格式。上线半年获4万+星标,应用于1200+AI项目。其功能亮点包括智能内容提取引擎、AI就绪数据管道和企业级特性,支持动态页面处理、多语言识别及分布式部署。技术架构基于Python 3.10与Scrapy框架,性能卓越,适用于AI训练数据采集、行业情报监控等场景。相比Scrapy、BeautifulSoup等传统工具,Crawl4AI在动态页面支持、PDF解析和语义分块方面更具优势
40.8K star!让AI帮你读懂整个互联网:Crawl4AI开源爬虫工具深度解析
分享一个非常实用的在线AI工具网站
在线工具网是一个包含AI工具、站长工具、开发人员工具、实用工具、AI助手,能够提供最新AI知识库、在线编码、正则表达式、加密解密、二维码生成、在线进制转换、JSON解析格式化、JavaScript、css、httml格式化/混淆/压缩、时间戳转换等免费在线AI工具平台。
98 34
对比测评:为什么AI编程工具需要 Rules 能力?
通义灵码Project Rules是一种针对AI代码生成的个性化规则设定工具,旨在解决AI生成代码不精准或不符合开发者需求的问题。通过定义编码规则(如遵循SOLID原则、OWASP安全规范等),用户可引导模型生成更符合项目风格和偏好的代码。例如,在使用阿里云百炼服务平台的curl调用时,通义灵码可根据预设规则生成Java代码,显著提升代码采纳率至95%以上。此外,还支持技术栈、应用逻辑设计、核心代码规范等多方面规则定制,优化生成代码的质量与安全性。
110 40
“服务器老被黑?那是你没上AI哨兵!”——聊聊基于AI的网络攻击检测那些事儿
“服务器老被黑?那是你没上AI哨兵!”——聊聊基于AI的网络攻击检测那些事儿
30 12
对比测评:为什么AI编程工具需要 Rules 能力?
AI规则引导模型生成更为精准、符合个人偏好或项目风格的代码与回答。
无headers爬虫 vs 带headers爬虫:Python性能对比
无headers爬虫 vs 带headers爬虫:Python性能对比
Headers池技术在Python爬虫反反爬中的应用
Headers池技术在Python爬虫反反爬中的应用
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
278 6
Python 原生爬虫教程:网络爬虫的基本概念和认知
网络爬虫是一种自动抓取互联网信息的程序,广泛应用于搜索引擎、数据采集、新闻聚合和价格监控等领域。其工作流程包括 URL 调度、HTTP 请求、页面下载、解析、数据存储及新 URL 发现。Python 因其丰富的库(如 requests、BeautifulSoup、Scrapy)和简洁语法成为爬虫开发的首选语言。然而,在使用爬虫时需注意法律与道德问题,例如遵守 robots.txt 规则、控制请求频率以及合法使用数据,以确保爬虫技术健康有序发展。
基于爬虫和机器学习的招聘数据分析与可视化系统,python django框架,前端bootstrap,机器学习有八种带有可视化大屏和后台
本文介绍了一个基于Python Django框架和Bootstrap前端技术,集成了机器学习算法和数据可视化的招聘数据分析与可视化系统,该系统通过爬虫技术获取职位信息,并使用多种机器学习模型进行薪资预测、职位匹配和趋势分析,提供了一个直观的可视化大屏和后台管理系统,以优化招聘策略并提升决策质量。
459 4

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等