Qwen-Agent:阿里通义开源 AI Agent 应用开发框架,支持构建多智能体,具备自动记忆上下文等能力

简介: Qwen-Agent 是阿里通义开源的一个基于 Qwen 模型的 Agent 应用开发框架,支持指令遵循、工具使用、规划和记忆能力,适用于构建复杂的智能代理应用。

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

原文链接:https://mp.weixin.qq.com/s/Xz111tPIAANjKdyTaZe6VA


🚀 快速阅读

  1. 功能:支持指令遵循、工具使用、记忆能力、函数调用、代码解释器和多代理框架。
  2. 技术:基于大语言模型(LLM)、工具集成、智能代理架构和 RAG 算法。
  3. 应用:适用于客户服务、个人助理、教育学习、内容创作、技术支持和数据分析等场景。

正文(附运行示例)

Qwen-Agent 是什么

公众号: 蚝油菜花 - Qwen-Agent

Qwen-Agent 是基于通义千问模型(Qwen)的开源 Agent 开发框架,支持开发者利用 Qwen 模型的指令遵循、工具使用、规划和记忆能力构建智能代理应用。Qwen-Agent 支持函数调用、代码解释器和 RAG(检索增强生成)等功能,能够处理从 8K 到 100 万 tokens 的文档,超越传统长上下文模型。

Qwen-Agent 提供了大模型和工具的原子组件,以及智能体的高级抽象组件,使开发者能够快速开发和部署复杂的 AI 代理应用。无论是构建客户服务机器人、个人助理,还是进行内容创作和数据分析,Qwen-Agent 都能提供强大的支持。

Qwen-Agent 的主要功能

  • 指令遵循:Qwen-Agent 能理解和执行用户的指令。
  • 工具使用:支持智能体调用外部工具完成任务。
  • 记忆能力:Qwen-Agent 具备记忆上下文的能力,能在对话中保持状态。
  • 函数调用:支持智能体调用预定义的函数或 API。
  • 代码解释器:内置代码解释器,支持智能体执行和解释代码。
  • 多代理框架:支持构建和管理多个智能代理。

Qwen-Agent 的技术原理

  • 大语言模型(LLM):基于大型预训练语言模型,如 Qwen,处理复杂的语言任务。
  • 工具集成:集成各种工具,包括 API、脚本或外部程序,智能体。
  • 智能代理架构:用智能代理架构,智能体能继承自 Agent 类,实现具体的应用逻辑。
  • RAG 算法:用 RAG 算法处理长文档,将文档分割成小块,保留最相关的部分,提升上下文处理能力。

如何运行 Qwen-Agent

安装

pip install -U "qwen-agent[gui,rag,code_interpreter,python_executor]"
# 或者使用 `pip install -U qwen-agent` 安装最小依赖。

开发自定义 Agent

以下示例展示了如何创建一个能够读取 PDF 文件并使用工具的 Agent:

import pprint
import urllib.parse
import json5
from qwen_agent.agents import Assistant
from qwen_agent.tools.base import BaseTool, register_tool

# 步骤 1(可选):添加自定义工具 `my_image_gen`
@register_tool('my_image_gen')
class MyImageGen(BaseTool):
    description = 'AI 绘画(图像生成)服务,输入文本描述,返回基于文本信息绘制的图像 URL。'
    parameters = [{
   
        'name': 'prompt',
        'type': 'string',
        'description': '所需图像内容的详细描述,使用英文',
        'required': True
    }]

    def call(self, params: str, **kwargs) -> str:
        prompt = json5.loads(params)['prompt']
        prompt = urllib.parse.quote(prompt)
        return json5.dumps(
            {
   'image_url': f'https://image.pollinations.ai/prompt/{prompt}'},
            ensure_ascii=False)

# 步骤 2:配置使用的 LLM
llm_cfg = {
   
    'model': 'qwen-max',
    'model_server': 'dashscope',
    'generate_cfg': {
   
        'top_p': 0.8
    }
}

# 步骤 3:创建 Agent
system_instruction = '''你是一个有用的助手。
在收到用户的请求后,你应该:
- 首先绘制图像并获取图像 URL,
- 然后运行代码 `request.get(image_url)` 下载图像,
- 最后从给定的文档中选择一个图像操作来处理图像。
请使用 `plt.show()` 显示图像。'''
tools = ['my_image_gen', 'code_interpreter']
files = ['./examples/resource/doc.pdf']
bot = Assistant(llm=llm_cfg,
                system_message=system_instruction,
                function_list=tools,
                files=files)

# 步骤 4:运行 Agent
messages = []
while True:
    query = input('用户查询: ')
    messages.append({
   'role': 'user', 'content': query})
    response = []
    for response in bot.run(messages=messages):
        print('助手响应:')
        pprint.pprint(response, indent=2)
    messages.extend(response)

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

相关文章
|
2天前
|
机器学习/深度学习 人工智能 自然语言处理
PeterCat:一键创建开源项目 AI 问答机器人,自动抓取 GitHub 仓库信息、文档和 issue 等构建知识库
PeterCat 是一款开源的智能答疑机器人,能够自动抓取 GitHub 上的文档和 issue 构建知识库,提供对话式答疑服务,帮助开发者和社区维护者高效解决技术问题。
35 7
PeterCat:一键创建开源项目 AI 问答机器人,自动抓取 GitHub 仓库信息、文档和 issue 等构建知识库
|
2天前
|
人工智能 分布式计算 数据处理
MaxCompute Data + AI:构建 Data + AI 的一体化数智融合
本次分享将分为四个部分讲解:第一部分探讨AI时代数据开发范式的演变,特别是MaxCompute自研大数据平台在客户工作负载和任务类型变化下的影响。第二部分介绍MaxCompute在资源大数据平台上构建的Data + AI核心能力,提供一站式开发体验和流程。第三部分展示MaxCompute Data + AI的一站式开发体验,涵盖多模态数据管理、交互式开发环境及模型训练与部署。第四部分分享成功落地的客户案例及其收益,包括互联网公司和大模型训练客户的实践,展示了MaxFrame带来的显著性能提升和开发效率改进。
|
17天前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术深度解析:从基础到应用的全面介绍
人工智能(AI)技术的迅猛发展,正在深刻改变着我们的生活和工作方式。从自然语言处理(NLP)到机器学习,从神经网络到大型语言模型(LLM),AI技术的每一次进步都带来了前所未有的机遇和挑战。本文将从背景、历史、业务场景、Python代码示例、流程图以及如何上手等多个方面,对AI技术中的关键组件进行深度解析,为读者呈现一个全面而深入的AI技术世界。
83 10
|
5天前
|
机器学习/深度学习 人工智能 自动驾驶
企业内训|AI大模型在汽车行业的前沿应用研修-某汽车集团
本课程是TsingtaoAI为某汽车集团高级项目经理设计研发,课程全面系统地解析AI的发展历程、技术基础及其在汽车行业的深度应用。通过深入浅出的理论讲解、丰富的行业案例分析以及实战项目训练,学员将全面掌握机器学习、深度学习、NLP与CV等核心技术,了解自动驾驶、智能制造、车联网与智能营销等关键应用场景,洞悉AI技术对企业战略布局的深远影响。
131 97
|
10天前
|
机器学习/深度学习 人工智能 物联网
AI赋能大学计划·大模型技术与应用实战学生训练营——湖南大学站圆满结营
12月14日,由中国软件行业校园招聘与实习公共服务平台携手魔搭社区共同举办的AI赋能大学计划·大模型技术与产业趋势高校行AIGC项目实战营·湖南大学站圆满结营。
AI赋能大学计划·大模型技术与应用实战学生训练营——湖南大学站圆满结营
|
2天前
|
机器学习/深度学习 人工智能 自然语言处理
CogAgent-9B:智谱 AI 开源 GLM-PC 的基座模型,专注于预测和执行 GUI 操作,可应用于自动化交互任务
CogAgent-9B 是智谱AI基于 GLM-4V-9B 训练的专用Agent任务模型,支持高分辨率图像处理和双语交互,能够预测并执行GUI操作,广泛应用于自动化任务。
32 12
CogAgent-9B:智谱 AI 开源 GLM-PC 的基座模型,专注于预测和执行 GUI 操作,可应用于自动化交互任务
|
21天前
|
机器学习/深度学习 人工智能 自然语言处理
转载:【AI系统】AI的领域、场景与行业应用
本文概述了AI的历史、现状及发展趋势,探讨了AI在计算机视觉、自然语言处理、语音识别等领域的应用,以及在金融、医疗、教育、互联网等行业中的实践案例。随着技术进步,AI模型正从单一走向多样化,从小规模到大规模分布式训练,企业级AI系统设计面临更多挑战,同时也带来了新的研究与工程实践机遇。文中强调了AI基础设施的重要性,并鼓励读者深入了解AI系统的设计原则与研究方法,共同推动AI技术的发展。
转载:【AI系统】AI的领域、场景与行业应用
|
16天前
|
机器学习/深度学习 人工智能 算法
探索AI在医疗诊断中的应用与挑战
【10月更文挑战第21天】 本文深入探讨了人工智能(AI)技术在医疗诊断领域的应用现状与面临的挑战,旨在为读者提供一个全面的视角,了解AI如何改变传统医疗模式,以及这一变革过程中所伴随的技术、伦理和法律问题。通过分析AI技术的优势和局限性,本文旨在促进对AI在医疗领域应用的更深层次理解和讨论。
|
4天前
|
机器学习/深度学习 数据采集 人工智能
AI在用户行为分析中的应用:实现精准洞察与决策优化
AI在用户行为分析中的应用:实现精准洞察与决策优化
42 15
|
22天前
|
人工智能 缓存 异构计算
云原生AI加速生成式人工智能应用的部署构建
本文探讨了云原生技术背景下,尤其是Kubernetes和容器技术的发展,对模型推理服务带来的挑战与优化策略。文中详细介绍了Knative的弹性扩展机制,包括HPA和CronHPA,以及针对传统弹性扩展“滞后”问题提出的AHPA(高级弹性预测)。此外,文章重点介绍了Fluid项目,它通过分布式缓存优化了模型加载的I/O操作,显著缩短了推理服务的冷启动时间,特别是在处理大规模并发请求时表现出色。通过实际案例,展示了Fluid在vLLM和Qwen模型推理中的应用效果,证明了其在提高模型推理效率和响应速度方面的优势。
云原生AI加速生成式人工智能应用的部署构建

热门文章

最新文章