自学记录鸿蒙API 13:实现多目标识别Object Detection

简介: 多目标识别技术广泛应用于动物识别、智能相册分类和工业检测等领域。本文通过学习HarmonyOS的Object Detection API(API 13),详细介绍了如何实现一个多目标识别应用,涵盖从项目初始化、核心功能实现到用户界面设计的全过程。重点探讨了目标类别识别、边界框生成、高精度置信度等关键功能,并分享了性能优化与功能扩展的经验。最后,作者总结了学习心得,并展望了未来结合语音助手等创新应用的可能性。如果你对多目标识别感兴趣,不妨从基础功能开始,逐步实现自己的创意。

起步:什么叫多目标识别?

无论是生活中的动物识别、智能相册中的场景分类,还是工业领域的检测任务,都能看到多目标识别的身影。这次,我决定通过学习HarmonyOS最新的Object Detection API(API 13),一步步探索如何实现多目标识别应用,并通过亲手完成一个完整的项目来验证自己的学习成果。


先思考

在深入学习之前,我认真思考了这一技术的潜在应用场景:

  1. 智能图像分类:对用户拍摄的图片进行智能分类,比如区分风景、建筑、人物等。
  2. 工业检测:识别生产线上产品的质量问题,如瑕疵或异常。
  3. 无人零售:分析购物场景中的商品分布,提高商品推荐精度。
  4. 交通监控:检测车辆和行人,实现交通状况分析。
  5. AR互动:结合多目标识别技术,实现与周围物体的实时交互。

你还别说,我认识到多目标识别的广阔潜力,同时也促使我更加系统地理解其背后的实现逻辑。


第一阶段:了解Object Detection API的功能

HarmonyOS的Object Detection API提供了以下能力:

  • 目标类别识别:识别图像中目标的类别,如风景、动物、植物等。
  • 边界框生成:为识别的目标生成精确的边界框,便于后续处理。
  • 高精度置信度:为每个目标提供置信度分数,衡量识别结果的可靠性。
  • 多目标支持:能够在单张图片中同时检测多个目标对象。

这种强大的功能正是我此次学习和实践的重点。


第二阶段:项目初始化与权限配置

为了确保多目标识别服务能够正常运行,我首先配置了项目的权限文件。以下是必要的权限配置:

{
  "module": {
    "abilities": [
      {
        "name": "ObjectDetectionAbility",
        "permissions": [
          "ohos.permission.INTERNET",
          "ohos.permission.READ_MEDIA",
          "ohos.permission.WRITE_MEDIA"
        ]
      }
    ]
  }
}

通过这些配置,我的项目能够读取用户的图片文件,并与HarmonyOS的AI服务接口交互。


第三阶段:多目标识别核心功能实现

初始化与销毁检测器

多目标识别服务需要初始化一个检测器实例,同时在不再使用时销毁该实例以释放资源。以下是相关代码:

import { objectDetection } from '@kit.CoreVisionKit';
let detector: objectDetection.ObjectDetector | undefined = undefined;
async function initializeDetector() {
    detector = await objectDetection.ObjectDetector.create();
    console.info('多目标识别检测器初始化成功');
}
async function destroyDetector() {
    if (detector) {
        await detector.destroy();
        console.info('多目标识别检测器已销毁');
    }
}

加载图片并处理检测

实现多目标识别的核心在于加载图片并调用process方法进行检测:

async function detectObjects(imageUri: string) {
    if (!detector) {
        console.error('检测器未初始化');
        return;
    }
    const pixelMap = await loadPixelMap(imageUri);
    const request = {
        inputData: { pixelMap },
        scene: visionBase.SceneMode.FOREGROUND,
    };
    const response = await detector.process(request);
    if (response.objects.length === 0) {
        console.info('未检测到任何目标');
    } else {
        response.objects.forEach((object, index) => {
            console.info(`目标 ${index + 1}:类别 - ${object.labels[0]}, 置信度 - ${object.score}`);
        });
    }
    pixelMap.release();
}

辅助方法:加载图片

import { fileIo } from '@kit.CoreFileKit';
import { image } from '@kit.ImageKit';
async function loadPixelMap(imageUri: string): Promise<image.PixelMap> {
    try {
        console.info(`加载图片: ${imageUri}`);
        // 打开图片文件
        const fileDescriptor = await fileIo.open(imageUri, fileIo.OpenMode.READ_ONLY);
        const imageSource = image.createImageSource(fileDescriptor.fd);
        // 创建PixelMap对象
        const pixelMap = await imageSource.createPixelMap();
        // 关闭文件资源
        await fileIo.close(fileDescriptor);
        console.info('PixelMap加载成功');
        return pixelMap;
    } catch (error) {
        console.error('加载图片失败:', error);
        throw new Error('加载PixelMap失败');
    }
}

第四阶段:用户界面设计

为了使用户可以方便地选择图片并查看检测结果,我利用ArkUI设计了一个简单的用户界面:

import { View, Text, Button } from '@ohos.arkui';
export default View.create({
    build() {
        return {
            type: "flex",
            flexDirection: "column",
            children: [
                {
                    type: Text,
                    content: "多目标识别应用",
                    style: { fontSize: "20vp", textAlign: "center", marginTop: "20vp" },
                },
                {
                    type: Button,
                    content: "选择图片",
                    style: { height: "50vp", marginTop: "10vp" },
                    onClick: this.onSelectImage,
                },
                {
                    type: Button,
                    content: "检测目标",
                    style: { height: "50vp", marginTop: "10vp" },
                    onClick: this.onDetectObjects,
                },
            ],
        };
    },
    onSelectImage() {
        this.imageUri = '/data/media/sample_image.jpg';
        console.info('图片已选择:', this.imageUri);
    },
    async onDetectObjects() {
        await detectObjects(this.imageUri);
    },
});

第五阶段:性能优化与功能扩展

性能优化

  1. 分辨率调节:降低图片分辨率以减少处理时间。
  2. 并行处理:利用多线程同时处理多张图片。
  3. 缓存机制:缓存已处理的图片结果,避免重复计算。

功能扩展

  1. 目标类型可视化:在图片上绘制检测到的目标边界框。
  2. 分类统计:统计不同类别目标的数量。
  3. 实时检测:结合相机模块实现实时多目标识别。

最后的感悟

通过此次学习和实践,我不仅掌握了多目标识别API的基本功能,还深刻认识到其广阔的应用场景。在未来的开发中,我计划探索更多创新的实现方式,例如结合语音助手,通过语音控制触发目标识别,或与其他AI能力结合,开发更加智能的解决方案。

如果你也对多目标识别感兴趣,不妨从这些基础功能开始,一步步实现自己的创意!

当然如果你也在这一领域研究,不妨关注我,我们一起进步~!

目录
相关文章
|
7月前
|
缓存 JavaScript IDE
鸿蒙开发:基于最新API,如何实现组件化运行
手动只是让大家了解切换的原理,在实际开发中,可不推荐手动,下篇文章,我们将通过脚本或者插件,快速实现组件化模块之间的切换,实现独立运行,敬请期待!
210 0
鸿蒙开发:基于最新API,如何实现组件化运行
|
10月前
|
数据采集 API 开发工具
从 0 到 1 掌握鸿蒙 AudioRenderer 音频渲染:我的自学笔记与踩坑实录(API 14)
本文详细介绍了在 HarmonyOS 中使用 AudioRenderer 开发音频播放功能的完整流程。从环境准备(SDK 5.0.3、DevEco Studio 5.0.7)到核心概念(状态机模型、异步回调),再到开发步骤(实例创建、数据回调、状态控制),结合代码示例与常见问题解决方法,帮助开发者掌握 AudioRenderer 的底层控制与定制化能力。同时,文章还提供了性能优化建议(多线程处理、缓冲管理)及学习路径,附带官方文档和示例代码资源,助你快速上手并避开常见坑点。
387 7
|
10月前
|
存储 编解码 资源调度
鸿蒙相机开发实战:从设备适配到性能调优 —— 我的 ArkTS 录像功能落地手记(API 15)
本文分享鸿蒙相机开发经验,从环境准备到核心逻辑实现,涵盖权限声明、模块导入、Surface关联与分辨率匹配,再到录制控制及设备适配法则。通过实战案例解析,如旋转补偿、动态帧率调节和编解码优化,帮助开发者掌握功能实现、设备适配与体验设计三大要点,减少开发坑点。适合鸿蒙新手及希望深化硬件交互能力的工程师参考收藏。
403 2
|
API 开发者 UED
自学记录鸿蒙API 13:PreviewKit从文件预览到应用开发
通过学习API 13,我深入研究了**PreviewKit(文件预览服务)**。该模块支持快速预览多种文件类型(文本、图片、视频、音频、PDF等),为文件管理类应用提供系统级支持。本文分享了从搭建开发环境到实现单文件和多文件预览的全过程,并介绍了如何构建一个实用的文件预览助手应用。通过实践,不仅掌握了技术细节,还提升了个人开发能力。希望这些经验能为其他开发者带来启发与帮助。
315 10
自学记录鸿蒙API 13:PreviewKit从文件预览到应用开发
|
10月前
|
人工智能 自然语言处理 JavaScript
鸿蒙 Next 对接 AI API 实现文字对话功能指南
本指南介绍如何在鸿蒙 Next 系统中对接 AI API,实现文字对话功能。首先通过 DevEco Studio 创建项目并配置网络权限,选择合适的 AI 服务(如华为云或百度文心一言)。接着,使用 Node.js 转发请求,完成客户端与服务器端代码编写。最后进行功能测试与优化,确保多轮对话顺畅、性能稳定。此过程需严格遵循开发规范,充分利用系统资源,为用户提供智能化交互体验。
480 0
|
人工智能 监控 安全
自学记录鸿蒙 API 13:骨骼点检测应用Core Vision Skeleton Detection
骨骼点检测技术能够从图片中识别出人体的关键骨骼点位置,如头部、肩部、手肘等,广泛应用于运动健身指导、游戏交互、医疗辅助、安全监控等领域。我决定深入学习HarmonyOS Next API 13中的Skeleton Detection API,并开发一个简单的骨骼点检测应用。通过理解API核心功能、项目初始化与配置、实现检测功能、构建用户界面,以及性能优化和功能扩展,逐步实现这一技术的应用。未来计划将其应用于健身指导和智能监控领域,探索与其他AI能力的结合,开发更智能的解决方案。如果你也对骨骼点检测感兴趣,不妨一起进步!
441 9
|
人工智能 数据可视化 API
自学记录鸿蒙API 13:Calendar Kit日历功能从学习到实践
本文介绍了使用HarmonyOS的Calendar Kit开发日程管理应用的过程。通过API 13版本,不仅实现了创建、查询、更新和删除日程等基础功能,还深入探索了权限请求、日历配置、事件添加及查询筛选等功能。实战项目中,开发了一个智能日程管理工具,具备可视化管理、模糊查询和智能提醒等特性。最终,作者总结了模块化开发的优势,并展望了未来加入语音助手和AI推荐功能的计划。
1014 1
|
10月前
|
安全 IDE Java
重学Java基础篇—Java Object类常用方法深度解析
Java中,Object类作为所有类的超类,提供了多个核心方法以支持对象的基本行为。其中,`toString()`用于对象的字符串表示,重写时应包含关键信息;`equals()`与`hashCode()`需成对重写,确保对象等价判断的一致性;`getClass()`用于运行时类型识别;`clone()`实现对象复制,需区分浅拷贝与深拷贝;`wait()/notify()`支持线程协作。此外,`finalize()`已过时,建议使用更安全的资源管理方式。合理运用这些方法,并遵循最佳实践,可提升代码质量与健壮性。
304 1
|
10月前
|
Java
课时78:Object类的基本概念
Object类的主要特点是可以解决参数的统一问题,使用object类可以接受所有的数据类型。 1. Object类简介 2. 观察Object类接收所有子类对象 3. 使用Object类接收数组
202 0
|
JSON Java Apache
Java基础-常用API-Object类
继承是面向对象编程的重要特性,允许从已有类派生新类。Java采用单继承机制,默认所有类继承自Object类。Object类提供了多个常用方法,如`clone()`用于复制对象,`equals()`判断对象是否相等,`hashCode()`计算哈希码,`toString()`返回对象的字符串表示,`wait()`、`notify()`和`notifyAll()`用于线程同步,`finalize()`在对象被垃圾回收时调用。掌握这些方法有助于更好地理解和使用Java中的对象行为。
168 8

热门文章

最新文章