基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真

简介: 本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。

1.算法运行效果图预览
(完整程序运行后无水印)

PSO优化过程:

image.png

PSO优化前后,模型训练对比:

image.png
image.png

数据预测对比:

image.png
image.png

误差回归对比:

image.png
image.png

2.算法运行软件版本
matlab2022a

3.部分核心程序
(完整版代码包含详细中文注释和操作步骤视频)

```LR = g1(1);
NN1 = floor(g1(2))+1;

if g1(3)<1/3 x1=4; end if g1(3)>=1/3 & g1(3)<2/3 x1=5; end if g1(3)>=2/3
x1=6;
end

if g1(4)<1/3 x2=3; end if g1(4)>=1/3 & g1(4)<2/3 x2=5; end if g1(4)>=2/3
x2=7;
end

CNN_GRN_SAM = func_model2(Nfactor,NN1,x1,x2);

%设置
%迭代次数
%学习率为0.001
opt = trainingOptions('adam', ...
'MaxEpochs', 20, ...
'InitialLearnRate', LR, ...
'LearnRateSchedule', 'piecewise', ...
'LearnRateDropFactor', 0.075, ...
'LearnRateDropPeriod', 200, ...
'Shuffle', 'every-epoch', ...
'Plots', 'training-progress', ...
'Verbose', false);

%训练
[net,INFO] = trainNetwork(Ptrain_reshape, t_train, CNN_GRN_SAM, opt);
Rerr = INFO.TrainingRMSE;
Rlos = INFO.TrainingLoss;
figure
subplot(211)
plot(Rerr)
xlabel('迭代次数')
ylabel('RMSE')
grid on

subplot(212)
plot(Rlos)
xlabel('迭代次数')
ylabel('LOSS')
grid on
%数据预测

tmps = predict(net, Ptest_reshape );
T_pred = mapminmax('reverse', tmps', vmax2);

figure
plot(T_test, 'r')
hold on
plot(T_pred, 'b-x')
legend('真实值', '预测值')
grid on
%%试集结果
figure
plotregression(T_test,T_pred,['回归']);
ERR=mean(abs(T_test-T_pred));
ERR
save R2.mat Rerr Rlos T_test T_pred ERR gb1
180

```

4.算法理论概述
时间序列预测在众多领域中都具有重要的应用价值,如金融市场预测、气象预报、交通流量预测等。传统的时间序列预测方法在处理复杂的非线性时间序列数据时往往表现出一定的局限性。近年来,深度学习技术的发展为时间序列预测提供了新的思路和方法。

网络结构

CNN-GRU-SAM 网络由卷积层、GRU 层、自注意力机制层和全连接层组成。

卷积层用于提取时间序列数据的局部特征;GRU 层用于处理时间序列数据中的长期依赖关系;自注意力机制层用于捕捉时间序列数据中的全局特征;全连接层将提取到的特征进行整合,输出预测结果。

算法流程

1.数据预处理:对时间序列数据进行归一化处理,使其取值范围在([0,1])之间。

2.初始化粒子群:随机生成一组粒子,每个粒子代表一组网络参数。

3.计算适应度值:对于每个粒子,将其对应的网络参数代入 CNN-GRU-SAM 网络中,对训练数据进行预测,并计算预测结果与真实值之间的误差,作为该粒子的适应度值。

4.更新粒子位置和速度:根据粒子的适应度值,更新粒子的个体最优位置和全局最优位置,并根据粒子的位置和速度更新公式,更新粒子的位置和速度。

5.重复步骤 3 和 4,直到满足停止条件(如达到最大迭代次数或适应度值小于某个阈值)。

6.输出最优网络参数:将全局最优位置对应的网络参数作为最优网络参数,代入 CNN-GRU-SAM 网络中,对测试数据进行预测,得到最终的预测结果。

   基于 PSO 粒子群优化的 CNN-GRU-SAM 网络时间序列回归预测算法是一种有效的时间序列预测方法。该算法通过结合卷积神经网络、门控循环单元、自注意力机制和粒子群优化算法的优点,能够自动提取时间序列数据中的局部特征、长期依赖关系和全局特征,提高了时间序列预测的准确性和稳定性。同时,该算法还具有较高的效率,能够在较短的时间内处理大规模时间序列数据。
相关文章
|
7月前
|
机器学习/深度学习 算法
【MATLAB】PSO粒子群优化BiLSTM(PSO_BiLSTM)的时间序列预测
【MATLAB】PSO粒子群优化BiLSTM(PSO_BiLSTM)的时间序列预测
183 5
|
4月前
|
机器学习/深度学习 算法 数据挖掘
基于WOA优化的CNN-LSTM的时间序列回归预测matlab仿真
本项目采用MATLAB 2022a实现时间序列预测,利用CNN与LSTM结合的优势,并以鲸鱼优化算法(WOA)优化模型超参数。CNN提取时间序列的局部特征,LSTM处理长期依赖关系,而WOA确保参数最优配置以提高预测准确性。完整代码附带中文注释及操作指南,运行效果无水印展示。
|
3月前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的CNN-LSTM的时间序列回归预测matlab仿真
本项目展示了一种结合灰狼优化(GWO)与深度学习模型(CNN和LSTM)的时间序列预测方法。GWO算法高效优化模型超参数,提升预测精度。CNN提取局部特征,LSTM处理长序列依赖,共同实现准确的未来数值预测。项目包括MATLAB 2022a环境下运行的完整代码及视频教程,代码内含详细中文注释,便于理解和操作。
|
4月前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的CNN-GRU的时间序列回归预测matlab仿真
时间序列预测关键在于有效利用历史数据预测未来值。本研究采用卷积神经网络(CNN)提取时间序列特征,结合GRU处理序列依赖性,并用灰狼优化(GWO)精调模型参数。CNN通过卷积与池化层提取数据特征,GRU通过更新门和重置门机制有效管理长期依赖。GWO模拟灰狼社群行为进行全局优化,提升预测准确性。本项目使用MATLAB 2022a实现,含详细中文注释及操作视频教程。
|
4月前
|
机器学习/深度学习 算法 数据挖掘
基于WOA优化的CNN-GRU的时间序列回归预测matlab仿真
本项目运用鲸鱼优化算法(WOA)优化卷积神经网络(CNN)与GRU网络的超参数,以提升时间序列预测精度。在MATLAB 2022a环境下,通过CNN提取时间序列的局部特征,而GRU则记忆长期依赖。WOA确保模型参数最优配置。代码附有中文注释及操作视频,便于理解和应用。效果预览无水印,直观展示预测准确性。
|
5月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的CNN-GRU的时间序列回归预测matlab仿真
- **算法理论:** 利用PSO优化的CNN-GRU,结合CNN的特征提取和GRU的记忆机制,进行时间序列预测。 - **CNN:** 通过卷积捕获序列的结构信息。 - **GRU:** 简化的LSTM,处理序列依赖。 - **预测步骤:** 1. 初始化粒子群,每粒子对应一组模型参数。 2. 训练并评估CNN-GRU模型的验证集MSE。 3. 使用PSO更新参数,寻找最佳配置。 4. 迭代优化直至满足停止准则。 ```
|
7月前
|
机器学习/深度学习 算法
【MATLAB】PSO_BiLSTM神经网络回归预测算法
【MATLAB】PSO_BiLSTM神经网络回归预测算法
90 0
|
6月前
|
机器学习/深度学习 算法 数据可视化
基于GA遗传优化的CNN-LSTM的时间序列回归预测matlab仿真
摘要:该内容展示了基于遗传算法优化的CNN-LSTM时间序列预测模型在matlab2022a中的应用。核心程序包括遗传算法优化过程、网络训练、误差分析及预测结果的可视化。模型通过GA调整CNN-LSTM的超参数,提升预测准确性和稳定性。算法流程涉及初始化、评估、选择、交叉和变异等步骤,旨在找到最佳超参数以优化模型性能。
|
7月前
|
机器学习/深度学习 算法 数据挖掘
基于PSO优化的CNN-GRU-Attention的时间序列回归预测matlab仿真
摘要: 本文介绍了运用粒子群优化(PSO)调整深度学习模型超参数以提升时间序列预测性能的方法。在比较了优化前后的效果(Ttttttttttt12 vs Ttttttttttt34)后,阐述了使用matlab2022a软件的算法。文章详细讨论了CNN、GRU网络和注意力机制在时间序列预测中的作用,以及PSO如何优化这些模型的超参数。核心程序展示了PSO的迭代过程,通过限制和调整粒子的位置(x1)和速度(v1),寻找最佳解决方案(gbest1)。最终,结果保存在R2.mat文件中。
基于PSO优化的CNN-GRU-Attention的时间序列回归预测matlab仿真
|
5月前
|
机器学习/深度学习 算法
基于PSO粒子群优化的CNN-LSTM的时间序列回归预测matlab仿真
**算法预览图省略** - **软件版本**: MATLAB 2022a - **核心代码片段**略 - **PSO-CNN-LSTM概览**: 结合深度学习与优化,解决复杂时间序列预测。 - **CNN**利用卷积捕获时间序列的空间特征。 - **LSTM**通过门控机制处理长序列依赖,避免梯度问题。 - **流程**: 1. 初始化粒子群,每个粒子对应CNN-LSTM参数。 2. 训练模型,以验证集MSE评估适应度。 3. 使用PSO更新粒子参数,寻找最佳配置。 4. 迭代优化直到满足停止条件,如最大迭代次数或找到优良解。