单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 本项目使用FW烟花优化算法求解单目标问题,并在MATLAB2022A中实现仿真,对比PSO和GA的性能。核心代码展示了适应度计算、火花生成及位置约束等关键步骤。最终通过收敛曲线对比三种算法的优化效果。烟花优化算法模拟烟花爆炸过程,探索搜索空间,寻找全局最优解,适用于复杂非线性问题。PSO和GA则分别适合快速收敛和大解空间的问题。参数调整和算法特性分析显示了各自的优势与局限。

1.程序功能描述
单目标问题的FW烟花优化算法求解matlab仿真,对比PSO和GA。最后将FW,GA,PSO三种优化算法的优化收敛曲线进行对比。

2.测试软件版本以及运行结果展示
MATLAB2022A版本运行

6a967f1c10c510ef818cc50a534a2a91_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

3.核心程序
```for t=1:Iter
%计算每个烟花适应度值
for i=1:Npop
yfit(i)=func_fitness(x(i,:));
end
[F(t),~]=min(yfit);
Fmin=min(yfit);% 当前代最小适应度
Fmax=max(yfit);% 当前代最大适应度
%计算每个烟花的爆炸半径E_R和爆炸数目E_N以及产生的爆炸火花
E_R = zeros(1,Npop);
E_N = zeros(1,Npop);
% 高斯变异火花产生
Mut=randperm(Npop); % 随机选取烟花索引
for m1=1:M % 对M个烟花进行变异
m=Mut(m1); % 随机选取烟花
for n=1:E_N(m)
e=1+sqrt(1)randn(1,Dim); % 高斯变异因子
sparks(n,:,m)=sparks(n,:,m).
e;% 应用变异
% 变异后的位置约束
if sparks(n,1,m)>500||sparks(n,1,m)<100 sparks(n,1,m)=unifrnd(100,500,1,1); end if sparks(n,2,m)>79||sparks(n,2,m)<69
sparks(n,2,m)= unifrnd(69,79,1,1);
end
end
end
[Fitness,X]=sort(Fitness); % 适应度升序排列
x(1,:)=E_Sum(X(1),:); % 最优个体
dist=pdist(E_Sum); % 求解各火花两两间的欧式距离
S=squareform(dist); % 将距离向量重排成n*n数组
P = zeros(1,n);
for i=1:n % 分别求各行之和
P(i)=sum(S(i,:));
end
end

%求最大值输出
[F(Iter),Y]=min(Fit2);

figure;
plot(F, 'LineWidth', 2)
xlabel('迭代次数')
ylabel('目标函数值')
title('FWA算法迭代曲线');

save R3.mat F
48

```

4.本算法原理
烟花优化算法是一种模拟自然界烟花爆炸现象的启发式算法,由烟花发射、爆炸、再次爆炸和再次发射四个阶段组成。该算法通过模拟烟花在夜空中爆炸的过程,探索搜索空间,寻找全局最优解。

067a4132236b2530ebb8ff4ee2daaa2e_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

适应性与灵活性:FWA通过模拟烟花爆炸的动态过程,提供了搜索空间的多样性,适合解决复杂、非线性问题;PSO通过粒子的速度和位置更新快速接近最优解,适合快速收敛的问题;GA通过模拟生物进化机制,具有较强的全局搜索能力,适用于解空间较大的问题。
参数调整:FWA的爆炸半径和火花数直接影响搜索效率和精度,需仔细调整;PSO的惯性权重w、加速常数c1​,c2​对算法性能影响显著;GA的选择压力、交叉概率和变异概率是关键参数,需根据问题特性仔细设定。
收敛性和稳定性:FWA在后期迭代中可能因火花过度密集而降低搜索效率;PSO易陷入局部最优,特别是在高维问题中;GA的收敛速度较慢,但通常能获得较好的全局解。

相关文章
|
7月前
|
机器学习/深度学习 算法
【Matlab智能算法】PSO优化(双隐层)BP神经网络算法
【Matlab智能算法】PSO优化(双隐层)BP神经网络算法
|
2月前
|
算法 决策智能
基于GA-PSO遗传粒子群混合优化算法的TSP问题求解matlab仿真
本文介绍了基于GA-PSO遗传粒子群混合优化算法解决旅行商问题(TSP)的方法。TSP旨在寻找访问一系列城市并返回起点的最短路径,属于NP难问题。文中详细阐述了遗传算法(GA)和粒子群优化算法(PSO)的基本原理及其在TSP中的应用,展示了如何通过编码、选择、交叉、变异及速度和位置更新等操作优化路径。算法在MATLAB2022a上实现,实验结果表明该方法能有效提高求解效率和解的质量。
|
4月前
|
算法
基于GA-PSO遗传粒子群混合优化算法的CVRP问题求解matlab仿真
本文介绍了一种基于GA-PSO混合优化算法求解带容量限制的车辆路径问题(CVRP)的方法。在MATLAB2022a环境下运行,通过遗传算法的全局搜索与粒子群算法的局部优化能力互补,高效寻找最优解。程序采用自然数编码策略,通过选择、交叉、变异操作及粒子速度和位置更新,不断迭代直至满足终止条件,旨在最小化总行驶距离的同时满足客户需求和车辆载重限制。
|
5月前
|
算法 数据安全/隐私保护
基于GA遗传优化算法的Okumura-Hata信道参数估计算法matlab仿真
在MATLAB 2022a中应用遗传算法进行无线通信优化,无水印仿真展示了算法性能。遗传算法源于Holland的理论,用于全局优化,常见于参数估计,如Okumura-Hata模型的传播损耗参数。该模型适用于150 MHz至1500 MHz的频段。算法流程包括选择、交叉、变异等步骤。MATLAB代码执行迭代,计算目标值,更新种群,并计算均方根误差(RMSE)以评估拟合质量。最终结果比较了优化前后的RMSE并显示了SNR估计值。
82 7
|
7月前
|
机器学习/深度学习 算法
【Matlab智能算法】PSO优化(单隐层)BP神经网络算法
【Matlab智能算法】PSO优化(单隐层)BP神经网络算法
|
6月前
|
算法
基于GA-PSO遗传粒子群混合优化算法的VRPTW问题求解matlab仿真
摘要: 本文介绍了考虑时间窗的车辆路径问题(VRPTW),在MATLAB2022a中进行测试。VRPTW涉及车辆从配送中心出发,服务客户并返回,需在指定时间窗内完成且满足车辆容量限制,目标是最小化总行驶成本。文章探讨了遗传算法(GA)和粒子群优化(PSO)的基本原理及其在VRPTW中的应用,包括编码、适应度函数、选择、交叉、变异等步骤。同时,提出了动态惯性权重、精英策略、邻域搜索、多种群和启发式信息等优化策略,以应对时间窗限制并提升算法性能。
148 11
|
6月前
|
算法 调度 决策智能
基于GA-PSO遗传粒子群混合优化算法的DVRP问题求解matlab仿真
该文介绍了车辆路径问题(VRP)的优化求解,特别是动态车辆路径问题(DVRP)。在MATLAB2022a中运用GA-PSO混合优化算法进行测试,展示了运行结果图像。核心程序包含粒子更新、交叉、距离计算等步骤。DVRP在物流配送、运输调度中有广泛应用,目标是最小化行驶距离并满足车辆容量限制。遗传算法通过选择、交叉和变异操作寻找解,而粒子群优化模拟鸟群行为更新速度和位置。GA-PSO混合算法结合两者优点,提高搜索效率。在DVRP中,算法需考虑问题特性和约束,以找到高质量解。
|
6月前
|
算法 决策智能
基于GA-PSO遗传粒子群混合优化算法的CDVRP问题求解matlab仿真
该文介绍了车辆路径问题(Vehicle Routing Problem, VRP)中的组合优化问题CDVRP,旨在找寻满足客户需求的最优车辆路径。在MATLAB2022a中运行测试,结果显示了算法过程。核心程序运用了GA-PSO混合算法,包括粒子更新、交叉、距离计算及变异等步骤。算法原理部分详细阐述了遗传算法(GA)的编码、适应度函数、选择、交叉和变异操作,以及粒子群优化算法(PSO)的粒子表示、速度和位置更新。最后,GA-PSO混合算法结合两者的优点,通过迭代优化求解CDVRP问题。
|
算法
基于PSO粒子群算法优化RBF网络的数据预测matlab仿真
基于PSO粒子群算法优化RBF网络的数据预测matlab仿真
173 0
基于PSO粒子群算法优化RBF网络的数据预测matlab仿真
|
算法
一个基于matlab的标准PSO粒子群优化算法仿真
一个基于matlab的标准PSO粒子群优化算法仿真
281 0
一个基于matlab的标准PSO粒子群优化算法仿真