无问芯穹提出混合稀疏注意力方案MoA,加速长文本生成,实现最高8倍吞吐率提升

简介: 无问芯穹团队提出Mixture of Attention(MoA)方案,通过自动调整不同注意力头和层的稀疏注意力配置,解决大型语言模型(LLM)处理长文本时的内存和吞吐量需求问题。MoA能够显著增加有效上下文长度,提升检索准确性和解码吞吐量,减少GPU内存使用。实验结果表明,MoA在多个模型上表现出色,但构建和探索搜索空间仍需大量计算资源。

在人工智能领域,大型语言模型(LLM)的快速发展为自然语言处理任务带来了革命性的突破。然而,随着模型规模的不断扩大和上下文长度的增加,LLM在处理长文本时面临着巨大的内存和吞吐量需求。为了解决这一问题,无问芯穹团队提出了一种名为Mixture of Attention(MoA)的混合稀疏注意力方案,旨在通过自动调整不同注意力头和层的稀疏注意力配置,实现长文本生成的加速和吞吐率的提升。

MoA方案的核心思想在于,不同注意力头和层在处理长文本时具有不同的注意力模式和准确性-延迟权衡。传统的稀疏注意力方法通常采用统一的稀疏注意力掩码,无法捕捉到这种多样性。而MoA方案则通过构建和探索各种注意力模式及其相对于输入序列长度的缩放规则的搜索空间,为每个注意力头和层量身定制稀疏注意力配置。

具体而言,MoA方案首先对模型进行分析,评估不同配置的潜力,并确定最佳的稀疏注意力压缩计划。在处理不同输入大小时,MoA方案能够自适应地调整注意力头的焦点范围,使其能够扩展以适应更长的序列,或者保持对固定长度局部上下文的关注。这种灵活性使得MoA方案能够在保持相同平均注意力跨度的情况下,显著增加有效上下文长度。

为了验证MoA方案的有效性,无问芯穹团队在Vicuna-{7B,13B}和Llama3-{8B,70B}等多个模型上进行了实验。结果表明,MoA方案能够将有效上下文长度提高3.9倍,同时在相同平均注意力跨度下,将检索准确性提高1.5-7.1倍。此外,MoA方案还显著缩小了稀疏模型和密集模型之间的能力差距,将最大相对性能下降从9%-36%减少到5%以内。

在GPU内存使用方面,MoA方案实现了1.2-1.4倍的内存减少,同时将解码吞吐量提高了6.6-8.2倍和1.7-1.9倍,分别与FlashAttention2和vLLM相比。这些结果表明,MoA方案在实现长文本生成加速的同时,对性能的影响微乎其微。

MoA方案的优势在于其能够自动调整不同注意力头和层的稀疏注意力配置,以适应不同的输入大小和任务需求。这种灵活性使得MoA方案能够在保持相同平均注意力跨度的情况下,显著增加有效上下文长度,从而提高长文本生成的效率和准确性。

然而,MoA方案也面临着一些挑战。首先,构建和探索各种注意力模式及其相对于输入序列长度的缩放规则的搜索空间需要大量的计算资源和时间。其次,MoA方案的自适应调整机制需要在运行时进行,这可能会增加模型的复杂性和计算开销。最后,MoA方案的适用性可能受到特定任务和数据集的限制,需要进一步的研究和验证。

从第三方客观视角来看,MoA方案的提出为解决LLM在处理长文本时面临的内存和吞吐量需求问题提供了一种创新性的解决方案。其自动调整不同注意力头和层的稀疏注意力配置的思想,能够有效捕捉到不同注意力模式和准确性-延迟权衡的多样性,从而实现长文本生成的加速和吞吐率的提升。

然而,MoA方案也存在一些潜在的局限性和挑战,需要在未来的研究中进一步探索和解决。例如,如何在保证性能的前提下,降低构建和探索搜索空间的计算资源和时间需求;如何优化自适应调整机制,减少运行时的计算开销;以及如何提高MoA方案在不同任务和数据集上的适用性等。

arXiv:https://arxiv.org/abs/2406.14909

目录
相关文章
ModernBERT:英伟达开源的新一代编码器模型,性能超越 SOTA,通过去除填充和序列打包减少计算浪费,提高训练和推理的效率
ModernBERT 是由英伟达和 HuggingFace 等机构联合开源的新一代编码器模型,支持长上下文处理,性能超越 SOTA,适合多种自然语言处理任务。
205 7
ModernBERT:英伟达开源的新一代编码器模型,性能超越 SOTA,通过去除填充和序列打包减少计算浪费,提高训练和推理的效率
TurboAttention:基于多项式近似和渐进式量化的高效注意力机制优化方案,降低LLM计算成本70%
**TurboAttention**提出了一种全新的LLM信息处理方法。该方法通过一系列优化手段替代了传统的二次复杂度注意力机制,包括稀疏多项式软最大值近似和高效量化技术。
161 5
TurboAttention:基于多项式近似和渐进式量化的高效注意力机制优化方案,降低LLM计算成本70%
压缩大型语言模型(LLMs):缩小10倍、性能保持不变
尽管大规模语言模型(LLMs)在多种应用场景中表现出色,但其庞大的规模也带来了实际部署难题。本文探讨了通过模型压缩技术解决这些问题的方法,介绍了量化、剪枝和知识蒸馏三种主要压缩技术,并通过具体Python代码示例展示了如何将一个100M参数的文本分类模型压缩至52.8M参数,再通过4位量化进一步减小至原来的1/7,同时保持甚至提升性能。示例代码展示了从数据预处理、模型训练到评估的完整流程,证明了压缩技术的有效性。
349 6
CLEAR:新加坡国立大学推出线性注意力机制,使8K图像的生成速度提升6.3倍,显著减少了计算量和时间延迟
新加坡国立大学推出的CLEAR线性注意力机制,通过局部注意力窗口设计,显著提升了预训练扩散变换器生成高分辨率图像的效率,生成8K图像时提速6.3倍。
128 17
CLEAR:新加坡国立大学推出线性注意力机制,使8K图像的生成速度提升6.3倍,显著减少了计算量和时间延迟
深度学习中的模型压缩技术:精度与效率的平衡
在深度学习领域,模型压缩技术已经成为一项关键技术。它通过减少模型的参数数量和计算量,实现了模型的轻量化和高效化。本文将介绍几种常见的模型压缩方法,包括参数剪枝、量化、知识蒸馏等,并探讨这些方法如何帮助模型在保持精度的同时提高运行效率。我们将分析每种方法的原理、实现步骤以及优缺点,并通过实验结果对比不同方法的性能表现。最后,我们将讨论模型压缩技术在未来可能的发展方向及其应用前景。
145 1
用神经架构搜索给LLM瘦身,模型变小,准确度有时反而更高
【6月更文挑战第20天】研究人员运用神经架构搜索(NAS)压缩LLM,如LLaMA2-7B,找到小而精准的子网,降低内存与计算成本,保持甚至提升性能。实验显示在多个任务上,模型大小减半,速度加快,精度不变或提升。NAS虽需大量计算资源,但结合量化技术,能有效优化大型语言模型。[论文链接](https://arxiv.org/pdf/2405.18377)**
116 3
【SAM模型超级进化】MobileSAM轻量化的分割一切大模型出现,模型缩小60倍,速度提高40倍,效果不减
【SAM模型超级进化】MobileSAM轻量化的分割一切大模型出现,模型缩小60倍,速度提高40倍,效果不减
【译】Based:简单线性注意力语言模型平衡召回-吞吐量权衡
【译】Based:简单线性注意力语言模型平衡召回-吞吐量权衡
89 3
比标准Attention提速5-9倍,大模型都在用的FlashAttention v2来了
比标准Attention提速5-9倍,大模型都在用的FlashAttention v2来了
494 0
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等