ASAL:Sakana AI 联合 OpenAI 推出自动探索人工生命的系统,通过计算机模拟生命进化的过程

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,100CU*H 3个月
简介: ASAL 是由 Sakana AI 联合 OpenAI 等机构推出的自动化搜索人工生命系统,基于基础模型实现多种搜索机制,扩展了人工生命研究的边界。

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

原文链接:https://mp.weixin.qq.com/s/GzpDY_Qf44KY54eL_Ney5g


🚀 快速阅读

  1. 功能:ASAL 通过三种搜索机制,自动化搜索人工生命模拟,发现新的生命形式。
  2. 技术:基于视觉-语言基础模型和优化算法,实现模拟参数的调整和目标现象的匹配。
  3. 应用:在生物进化研究、智能机器人行为、游戏 AI 开发等领域具有广泛的应用前景。

正文(附运行示例)

ASAL 是什么

公众号: 蚝油菜花 - asal

ASAL(Automated Search for Artificial Life)是一个基于基础模型自动化搜索人工生命(ALife)的系统。该系统由 Sakana AI 联合 MIT、OpenAI 等机构共同推出,旨在通过多种搜索机制,发现和探索人工生命的新形式。

ASAL 主要基于三种搜索机制:有监督目标搜索、开放式搜索和照明式搜索。这些机制分别在特定现象、持续新行为和多样化行为的模拟中发现人工生命的新形式,并在多个经典 ALife 基质中进行了有效验证。

ASAL 的主要功能

  • 有监督目标搜索:搜索并发现能产生特定目标事件或事件序列的人工生命模拟,帮助研究者找到与特定现象相匹配的模拟环境。
  • 开放式搜索:寻找持续产生新行为和新奇事件的人工生命模拟,探索和复现现实世界中永无止境的新奇事物的爆发。
  • 照明式搜索:发现一组展现出多样行为的人工生命模拟,照亮和分类整个可能的人工生命现象空间,揭示“生命可能的形态”。
  • 跨基质兼容性:在多种不同的人工生命基质中工作,包括 Boids、Particle Life、Game of Life、Lenia 和 Neural Cellular Automata 等,显示出广泛的适用性。
  • 定量分析:基于基础模型的语义表示能力,对之前只能进行定性分析的人工生命现象进行定量分析,提供新的度量和分析工具。

ASAL 的技术原理

  • 视觉-语言基础模型:基于 CLIP(Contrastive Language-Image Pretraining),将图像和自然语言文本映射到共同的表示空间,进行相似性测量。
  • 嵌入和相似性测量:基于视觉-语言模型将模拟产生的图像和描述目标现象的文本提示嵌入到相同的表示空间,并测量它们之间的相似性。
  • 优化算法:运用优化算法(如遗传算法、CMA-ES 等)调整模拟参数,最大化目标现象的表示与模拟输出之间的匹配度。
  • 搜索策略
    • 有监督目标搜索:基于最大化模拟生成图像与目标提示词的匹配度寻找特定模拟。
    • 开放式搜索:最大化模拟产生的图像在基础模型表示空间中相对于历史状态的新颖度寻找开放式模拟。
    • 照明式搜索:最大化一组模拟在基础模型表示空间中的覆盖度,即最小化每个模拟与其最近邻的距离,寻找多样化的模拟。

如何运行 ASAL

首先,创建项目的 conda 环境:

conda env create -f environment.yaml
pip install -r requirements.txt

如果在安装过程中遇到问题,请根据系统的 CUDA 版本手动安装 jax,然后手动安装以下库:

pip install flax==0.9.0 transformers==4.45.2 tqdm==4.66.5 einops==0.8.0 evosax==0.1.6 imageio==2.35.1 imageio-ffmpeg==0.5.1 matplotlib==3.9.2 pillow==10.4.0

运行 ASAL 的示例代码可以参考 asal.ipynb

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

相关实践学习
使用PAI+LLaMA Factory微调Qwen2-VL模型,搭建文旅领域知识问答机器人
使用PAI和LLaMA Factory框架,基于全参方法微调 Qwen2-VL模型,使其能够进行文旅领域知识问答,同时通过人工测试验证了微调的效果。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
29天前
|
人工智能 监控 搜索推荐
给RAG打分:小白也能懂的AI系统评测全攻略
RAG系统评估听起来高深,其实跟我们生活中的'尝鲜评测'没啥两样!本文用轻松幽默的方式,带你从检索质量、生成质量到用户体验,全方位掌握如何科学评测RAG系统,避免踩坑,让你的AI应用又快又准。#RAG技术 #AI评估 #信息检索 #大模型 #数据科学
|
24天前
|
SQL 人工智能 数据可视化
高校迎新管理系统:基于 smardaten AI + 无代码开发实践
针对高校迎新痛点,基于smardaten无代码平台构建全流程数字化管理系统,集成信息采集、绿色通道、宿舍管理等七大模块,通过AI生成框架、可视化配置审批流与权限,实现高效、精准、可扩展的迎新服务,大幅提升管理效率与新生体验。
|
7天前
|
人工智能 小程序 Java
电子班牌管理系统源代码,基于AI人脸识别技术的智能电子班牌云平台解决方案
电子班牌管理系统源码,基于AI人脸识别的智慧校园云平台,支持SaaS架构,涵盖管理端、小程序与安卓班牌端。集成考勤、课表、通知、门禁等功能,提供多模式展示与教务联动,助力校园智能化管理。
59 0
|
18天前
|
人工智能 数据库 索引
超越幻觉:检索增强生成如何为AI大模型“装上”事实核查系统
超越幻觉:检索增强生成如何为AI大模型“装上”事实核查系统
206 107
|
11天前
|
人工智能 自然语言处理 安全
AI助教系统:基于大模型与智能体架构的新一代教育技术引擎
AI助教系统融合大语言模型、教育知识图谱、多模态交互与智能体架构,实现精准学情诊断、个性化辅导与主动教学。支持图文语音输入,本地化部署保障隐私,重构“教、学、评、辅”全链路,推动因材施教落地,助力教育数字化转型。(238字)
|
9天前
|
机器学习/深度学习 人工智能 自然语言处理
用AI守护迷途少年:戒毒所青少年心理疏导系统的技术实践
在戒毒所中,青少年心理更脆弱却难言苦痛。我们打造AI心理疏导系统,以多模态情绪识别、个性化疏导引擎与隐私优先架构,用技术补位心理支持,主动发现风险,精准干预,守护迷途少年重拾希望。(239字)
|
7天前
|
人工智能 API 开发工具
AskTable:可嵌入任何系统的 AI 数据智能体引擎
AskTable 是一款以 Table 为核心的数据 AI 基础设施。它通过标准化 API、SDK、iFrame 与智能体协议(MCP),让 AI 能直接理解、查询和分析表格数据,轻松嵌入企业现有系统。 AskTable 提供从数据接入、语义分析到可视化生成的完整能力,可无缝集成至网页、移动端、钉钉、企业微信或 Dify/HiAgent 等智能体平台。
|
10天前
|
人工智能 监控 Java
Java与AI智能体:构建自主决策与工具调用的智能系统
随着AI智能体技术的快速发展,构建能够自主理解任务、制定计划并执行复杂操作的智能系统已成为新的技术前沿。本文深入探讨如何在Java生态中构建具备工具调用、记忆管理和自主决策能力的AI智能体系统。我们将完整展示从智能体架构设计、工具生态系统、记忆机制到多智能体协作的全流程,为Java开发者提供构建下一代自主智能系统的完整技术方案。
137 4
|
8天前
|
人工智能 自然语言处理 数据可视化
smardaten AI + 无代码开发实践:基于自然语言交互快速开发【苏超赛事管理系统】
苏超赛事管理系统基于smardaten无代码平台,通过AI生成与可视化配置,实现球队、赛程、积分等全流程数字化管理,提升效率、优化体验、支持数据可视化,助力赛事高效运营。
smardaten AI + 无代码开发实践:基于自然语言交互快速开发【苏超赛事管理系统】
|
1月前
|
人工智能 算法 数据库
给AI装上一个'超级大脑':信息检索如何改变RAG系统的游戏规则
从传统检索方法到现代向量检索,通过一个购物助手的故事,直观展示了不同检索技术的原理与应用。学会这些技巧,让你的AI不再是「记忆只有金鱼长度」的大模型!
121 24

热门文章

最新文章