通义视觉推理大模型QVQ-72B-preview重磅上线

简介: Qwen团队推出了新成员QVQ-72B-preview,这是一个专注于提升视觉推理能力的实验性研究模型。提升了视觉表示的效率和准确性。它在多模态评测集如MMMU、MathVista和MathVision上表现出色,尤其在数学推理任务中取得了显著进步。尽管如此,该模型仍存在一些局限性,仍在学习和完善中。

在人类的思维中,语言和视觉紧密交织,塑造着我们感知和理解世界的方式。我们的推理能力深深植根于语言思维和视觉记忆之中。那么,当我们将这些能力赋予人工智能时,会发生什么呢?如今的大语言模型已经展现出卓越的推理能力,但我们不禁思考:它们能否通过掌握视觉理解的力量,攀登认知能力的新高峰?


设想一下,一个人工智能能够像物理学大师一样,面对复杂的物理问题,沉着冷静地通过逻辑推理找到解决方案。正是这样的愿景激发Qwen 团队创造了 QVQ —— 一个基于 Qwen2-VL-72B 构建的开源多模态推理模型(注:QVQ 的发音为 /kwik/)。


QVQ 在人工智能的视觉理解和复杂问题解决能力方面实现了重大突破。在 MMMU 评测中,QVQ 取得了 70.3 的优异成绩,并且在各项数学相关基准测试中相比 Qwen2-VL-72B-Instruct 都有显著提升。通过细致的逐步推理,QVQ 在视觉推理任务中展现出增强的能力,尤其在需要复杂分析思维的领域表现出色。


模型性能

在探索过程中,主要关注以下3个多模态评测集,考察模型在视觉任务上的推理能力:

1. MMMU:一个大学级别的多学科多模态评测集,旨在考察模型视觉相关的综合理解和推理能力。

2. MathVista:一个数学相关的视觉推理测试集,评估拼图测试图形的逻辑推理、函数图的代数推理和学术论文图形的科学推理等能力。

3. MathVision:一个高质量多模态数学推理测试集,来自于真实的数学竞赛,相比于MathVista具有更多的问题多样性和学科广度。

4.OlympiadBench:一个奥林匹克竞赛级别的双语多模态科学基准测试集,包含来自奥林匹克数学和物理竞赛的8,476个问题,包括中国高考。每个问题都附有专家级别的注释,详细说明了逐步推理的过程。

QVQ-72B-preview(qwen-judge)

o1-2024-12-17

gpt-4o-2024-05-13

Claude3.5 Sonnet-20241022

Gemini-2.0-flash

Qwen2VL-72B

MMMU(val)

70.3

77.3

69.1

70.4

70.7

64.5

MathVista(testmini)

70.5

71.0

63.8

65.3

69.9

70.5

MathVision(full)

37.3

-

30.4

35.6

41.0

25.9

MathVerse(mini)

-

50.2

46.3

47.8

36.3

OlympiadBench

20.4

-

25.9

-

-

11.2


模型局限性

QVQ-72B-Preview 是由 Qwen 团队开发的一个实验性研究模型,专注于提升视觉推理能力。虽然它展现出了超出预期的性能,但仍有几个需要注意的局限性:

  1. 语言混合和代码切换:模型可能会混合不同语言或意外地在语言之间切换,影响回复的清晰度。
  2. 递归推理循环:模型可能会陷入循环推理模式,导致回复冗长甚至没有得出最终的答案。
  3. 安全和伦理考虑:模型需要加强安全措施以确保可靠和安全的性能,用户在部署时应当谨慎。
  4. 性能和基准测试局限性:尽管 QvQ 模型在视觉推理方面有所改进,但它无法完全替代 Qwen2-VL-72B 的能力。在多步视觉推理过程中,模型可能会逐渐失去对图像内容的关注,导致产生幻觉。此外,在一些基础的识别任务如人物、动植物识相比Qwen2-VL-72B并没有表现出明显的提升。


模型示例

下列样例展示 QVQ 模型的思考过程——感知视觉内容,进行细致的分析推理,并质疑自身假设,仔细审视其推理过程的每一步,最后给出深思熟虑后的结论。

数学

query: Evaluate the integral of the functions graphed using the formula for circles:

So I've got this graph here with three semicircles, and I need to evaluate the integral of the functions that represent these semicircles using the formula for circles. The semicircles are labeled with expressions above them: the smallest one has √(2x - x²), the medium one has √(-12 + 8x - x²), and the largest one has √(-72 + 18x - x²). I need to find the area under each semicircle and sum them up, I think. But maybe there's a better way.
First, I know that a full circle with radius r has the equation (x - h)² + (y - k)² = r², where (h, k) is the center of the circle. Since these are semicircles, their equations should be of the form y = √(r² - (x - h)²) + k, assuming they're the upper halves of the circles.
Looking at the smallest semicircle, it's labeled y = √(2x - x²). I can try to complete the square to find the center and radius.
2x - x² = - (x² - 2x) = - (x² - 2x + 1 - 1) = - [(x - 1)² - 1] = - (x - 1)² + 1.
So, y = √[1 - (x - 1)²]. That means it's a semicircle with center at (1, 0) and radius 1.
Similarly, for the medium semicircle, y = √(-12 + 8x - x²). Let's complete the square for -x² + 8x - 12.
- x² + 8x - 12 = - (x² - 8x + 12) = - [(x - 4)² - 16 + 12] = - (x - 4)² + 4.
So, y = √[4 - (x - 4)²] = 2 √[1 - ((x - 4)/2)²]. This is a semicircle with center at (4, 0) and radius 2.
For the largest semicircle, y = √(-72 + 18x - x²). Again, complete the square for -x² + 18x - 72.
- x² + 18x - 72 = - (x² - 18x + 72) = - [(x - 9)² - 81 + 72] = - (x - 9)² + 9.
Thus, y = √[9 - (x - 9)²] = 3 √[1 - ((x - 9)/3)²]. This is a semicircle with center at (9, 0) and radius 3.
Now, since all these semicircles are sitting on the x-axis, their areas would just be half the area of their full circles. So, the area of a full circle is πr², so the area of a semicircle is (1/2)πr².
So, for the smallest semicircle with r = 1, area = (1/2)π(1)² = π/2.
For the medium one with r = 2, area = (1/2)π(2)² = 2π.
For the largest one with r = 3, area = (1/2)π(3)² = (9/2)π.
Adding them up, total area = π/2 + 2π + (9/2)π = (1/2 + 4/2 + 9/2)π = (14/2)π = 7π.
But wait, maybe I need to evaluate the integrals explicitly. Let's see.
The integral of y = √(2x - x²) dx from x = a to x = b, where a and b are the points where the semicircle intersects the x-axis.
From y = √(2x - x²), set y = 0: 2x - x² = 0 ⇒ x(x - 2) = 0 ⇒ x = 0 or x = 2.
So, the integral is ∫ from 0 to 2 of √(2x - x²) dx.
Similarly, for y = √(-12 + 8x - x²), find where y = 0: -x² + 8x - 12 = 0 ⇒ x² - 8x + 12 = 0 ⇒ x = [8 ± √(64 - 48)]/2 = [8 ± √16]/2 = [8 ± 4]/2 ⇒ x = 2 or x = 6.
So, integral from 2 to 6 of √(-x² + 8x - 12) dx.
For y = √(-72 + 18x - x²), set y = 0: -x² + 18x - 72 = 0 ⇒ x² - 18x + 72 = 0 ⇒ x = [18 ± √(324 - 288)]/2 = [18 ± √36]/2 = [18 ± 6]/2 ⇒ x = 6 or x = 12.
So, integral from 6 to 12 of √(-x² + 18x - 72) dx.
Now, to evaluate these integrals, I can use the formula for the area of a semicircle, which is (1/2)πr², as I did earlier. Alternatively, I can evaluate each integral directly.
But since I already found the radii for each semicircle, it's easier to use the area formula.
So, the total area is π/2 + 2π + (9/2)π = 7π, as before.
Alternatively, if I have to evaluate the integrals directly, I can use substitution.
For example, for the first integral: ∫√(2x - x²) dx from 0 to 2.
From earlier, 2x - x² = 1 - (x - 1)².
Let u = x - 1, then when x = 0, u = -1; when x = 2, u = 1.
So, ∫√(1 - u²) du from u = -1 to u = 1.
This is the integral of √(1 - u²), which is a standard integral representing the area of a semicircle with radius 1.
The integral of √(1 - u²) du from -1 to 1 is π/2, which matches what I got earlier.
Similarly, for the second integral: ∫√(4 - (x - 4)²) dx from x = 2 to x = 6.
Let u = x - 4, then when x = 2, u = -2; when x = 6, u = 2.
So, ∫√(4 - u²) du from u = -2 to u = 2.
This is ∫2√(1 - (u/2)²) du from -2 to 2.
This is the integral of √(1 - (u/2)²), which is the area of a semicircle with radius 2, scaled by 2.
Alternatively, recognizing that ∫√(4 - u²) du is the area of a semicircle with radius 2, which is π(2)² / 2 = 2π.
Similarly, for the third integral: ∫√(9 - (x - 9)²) dx from x = 6 to x = 12.
Let u = x - 9, then when x = 6, u = -3; when x = 12, u = 3.
So, ∫√(9 - u²) du from u = -3 to u = 3.
This is ∫3√(1 - (u/3)²) du from -3 to 3.
This is the integral of √(1 - (u/3)²), which is the area of a semicircle with radius 3, which is (9/2)π.
Adding them up again, total area is π/2 + 2π + (9/2)π = 7π.
Therefore, the integral evaluates to 7π.
**Final Answer**
\[ \boxed{7\pi} \]


query: Find the surface area bounded by the curves q=acdotcos(varphi)q = a \\cdot \\cos(\\varphi), p=bcdotcos(varphi)p = b \\cdot \\cos(\\varphi), b>a>0b > a > 0.

So I've got this problem here about finding the surface area bounded by two curves in what looks like polar coordinates. The curves are given by \( q = a \cdot \cos(\varphi) \) and \( p = b \cdot \cos(\varphi) \), with \( b > a > 0 \). There's a diagram accompanying it, but since I can't see it, I'll have to imagine it based on the description.
First off, I need to understand what these curves represent. Both equations are in terms of \( \varphi \), which is a common angular variable in polar coordinates. However, usually, in polar coordinates, you have \( r = f(\theta) \), where \( r \) is the radial distance and \( \theta \) is the angle. Here, we have \( q \) and \( p \) instead of \( r \) and \( \theta \), so I might need to adjust my notation accordingly or assume that \( q \) and \( p \) are analogous to \( r \) and \( \theta \).
Wait a minute, looking back at the user's message, it seems like there might be a typo or miscommunication in the variables. The diagram mentions \( \rho \) and \( \varphi \), but the equations use \( q \) and \( p \). This could be confusing. Maybe \( q \) is equivalent to \( \rho \), and \( \varphi \) is equivalent to \( \theta \). I'll assume that \( q \) is the radial variable and \( \varphi \) is the angular variable for the purpose of this problem.
So, rephrasing the curves:
- \( q = a \cdot \cos(\varphi) \)
- \( q = b \cdot \cos(\varphi) \), with \( b > a > 0 \)
I need to find the surface area bounded by these two curves.
First, I should visualize what these curves look like. Both are equations of the form \( q = k \cdot \cos(\varphi) \), which represent circles in polar coordinates. Specifically, \( q = a \cdot \cos(\varphi) \) is a circle with radius \( a/2 \) centered at \( (a/2, 0) \) in the \( q \)-\( \varphi \) plane, and similarly, \( q = b \cdot \cos(\varphi) \) is a circle with radius \( b/2 \) centered at \( (b/2, 0) \).
Since \( b > a > 0 \), the larger circle \( q = b \cdot \cos(\varphi) \) encompasses the smaller circle \( q = a \cdot \cos(\varphi) \), and they do not overlap except at the points where \( a \cdot \cos(\varphi) = b \cdot \cos(\varphi) \), which would only happen if \( a = b \) or \( \cos(\varphi) = 0 \). Since \( a \neq b \), the curves intersect where \( \cos(\varphi) = 0 \), which is at \( \varphi = \pi/2 \) and \( \varphi = 3\pi/2 \). At these points, \( q = 0 \), which corresponds to the origin.
So, the region bounded by these two curves is the area between these two circles, excluding the parts where \( q < 0 \), which isn't physically meaningful in polar coordinates.
Now, to find the surface area between these two curves, I need to integrate the difference between the two radial functions over the appropriate range of \( \varphi \).
The formula for the area between two polar curves is:
\[
A = \frac{1}{2} \int_{\varphi_1}^{\varphi_2} (r_{\text{outer}}^2 - r_{\text{inner}}^2) \, d\varphi
\]
In this case, \( r_{\text{outer}} = b \cdot \cos(\varphi) \) and \( r_{\text{inner}} = a \cdot \cos(\varphi) \), so:
\[
A = \frac{1}{2} \int_{\varphi_1}^{\varphi_2} \left( (b \cdot \cos(\varphi))^2 - (a \cdot \cos(\varphi))^2 \right) \, d\varphi
\]
Simplifying the integrand:
\[
(b^2 \cos^2(\varphi) - a^2 \cos^2(\varphi)) = (b^2 - a^2) \cos^2(\varphi)
\]
So, the integral becomes:
\[
A = \frac{1}{2} \int_{\varphi_1}^{\varphi_2} (b^2 - a^2) \cos^2(\varphi) \, d\varphi
\]
Now, I need to determine the limits of integration, \( \varphi_1 \) and \( \varphi_2 \). The region of interest is between the two circles, and since both curves are symmetric about the horizontal axis (where \( \varphi = 0 \)), I can integrate from \( \varphi = -\alpha \) to \( \varphi = \alpha \), where \( \alpha \) is the angle where the curves intersect, but since they only intersect at \( \varphi = \pi/2 \) and \( \varphi = 3\pi/2 \), where \( q = 0 \), I need to be careful.
Alternatively, I can integrate over the entire range where \( a \cdot \cos(\varphi) \leq q \leq b \cdot \cos(\varphi) \), which is from \( \varphi = -\pi/2 \) to \( \varphi = \pi/2 \), because outside this range, either \( q < 0 \), which isn't meaningful, or \( q = 0 \).
Wait, actually, in polar coordinates, \( q \) can be negative, but often we consider only \( q \geq 0 \). However, in some contexts, negative \( q \) can represent points in the opposite direction. But for the purpose of area, it's probably best to stick with \( q \geq 0 \).
Given that, the region of interest is from \( \varphi = -\pi/2 \) to \( \varphi = \pi/2 \), where both \( q = a \cdot \cos(\varphi) \) and \( q = b \cdot \cos(\varphi) \) are positive.
Therefore, the integral should be:
\[
A = \frac{1}{2} \int_{-\pi/2}^{\pi/2} (b^2 - a^2) \cos^2(\varphi) \, d\varphi
\]
I can factor out the constant \( (b^2 - a^2) \):
\[
A = \frac{1}{2} (b^2 - a^2) \int_{-\pi/2}^{\pi/2} \cos^2(\varphi) \, d\varphi
\]
Now, I need to evaluate the integral of \( \cos^2(\varphi) \) from \( -\pi/2 \) to \( \pi/2 \). I recall that \( \cos^2(\varphi) = \frac{1 + \cos(2\varphi)}{2} \), which might make the integration easier.
So, substituting:
\[
\int \cos^2(\varphi) \, d\varphi = \int \frac{1 + \cos(2\varphi)}{2} \, d\varphi = \frac{1}{2} \int (1 + \cos(2\varphi)) \, d\varphi = \frac{1}{2} \left( \varphi + \frac{\sin(2\varphi)}{2} \right) + C
\]
Now, evaluating this from \( -\pi/2 \) to \( \pi/2 \):
\[
\left. \frac{1}{2} \left( \varphi + \frac{\sin(2\varphi)}{2} \right) \right|_{-\pi/2}^{\pi/2} = \frac{1}{2} \left( \left( \frac{\pi}{2} + \frac{\sin(\pi)}{2} \right) - \left( -\frac{\pi}{2} + \frac{\sin(-\pi)}{2} \right) \right)
\]
Since \( \sin(\pi) = 0 \) and \( \sin(-\pi) = 0 \), this simplifies to:
\[
\frac{1}{2} \left( \frac{\pi}{2} + \frac{\pi}{2} \right) = \frac{1}{2} \cdot \pi = \frac{\pi}{2}
\]
Therefore, the area is:
\[
A = \frac{1}{2} (b^2 - a^2) \cdot \frac{\pi}{2} = \frac{\pi}{4} (b^2 - a^2)
\]
But wait a second, this seems too straightforward, and I'm wondering if I've missed something. Let me double-check.
First, the integral of \( \cos^2(\varphi) \) over \( -\pi/2 \) to \( \pi/2 \) indeed should be \( \pi/2 \), because \( \cos^2(\varphi) \) is symmetric and integrates to \( \pi \) over a full period, so over half a period, it should be \( \pi/2 \).
Moreover, the factor of \( 1/2 \) in front of the integral is correct for the area between two polar curves.
However, I recall that the area of a circle in polar coordinates is \( \pi r^2 \), and here, the area between two circles with radii \( a/2 \) and \( b/2 \) should be \( \pi (b/2)^2 - \pi (a/2)^2 = \pi (b^2 - a^2)/4 \), which matches my result.
But let's consider another approach to confirm.
Alternatively, I can think of the area as the difference between the areas of the two circles:
\[
A = \text{area of larger circle} - \text{area of smaller circle}
\]
But wait, the curves are not exactly circles centered at the origin. They are circles offset from the origin along the horizontal axis.
Specifically, \( q = a \cdot \cos(\varphi) \) can be rewritten in Cartesian coordinates (assuming \( q \) is the radial distance and \( \varphi \) is the angle) as:
\[
q = a \cdot \cos(\varphi) \implies q^2 = a q \cos(\varphi) \implies x^2 + y^2 = a x
\]
Completing the square:
\[
x^2 - a x + y^2 = 0 \implies \left( x - \frac{a}{2} \right)^2 - \left( \frac{a}{2} \right)^2 + y^2 = 0 \implies \left( x - \frac{a}{2} \right)^2 + y^2 = \left( \frac{a}{2} \right)^2
\]
So, it's a circle with center at \( (a/2, 0) \) and radius \( a/2 \).
Similarly, \( q = b \cdot \cos(\varphi) \) is a circle with center at \( (b/2, 0) \) and radius \( b/2 \).
Given that, the area between these two circles would indeed be \( \pi (b/2)^2 - \pi (a/2)^2 = \pi (b^2 - a^2)/4 \), which matches my earlier result.
Therefore, I'm confident that the surface area bounded by the curves \( q = a \cdot \cos(\varphi) \) and \( q = b \cdot \cos(\varphi) \), with \( b > a > 0 \), is \( \frac{\pi}{4} (b^2 - a^2) \).
**Final Answer**
\[ \boxed{ \frac{\pi}{4} (b^{2} - a^{2}) } \]


物理

query: 回答图中问题

5. 如图甲所示,理想变压器原线圈接在正弦式交流电源上,输入电压 u 随时间 t 变化的图像如图乙所示,副线圈接规格为“6V,3W”的灯泡。若灯泡正常发光,下列说法正确的是( )
A. 原线圈两端电压的有效值为 \(24\sqrt{2}\) V
B. 副线圈中电流的有效值为 0.5A
C. 原、副线圈匝数之比为 1:4
首先,我需要理解这个题目。题目中有一个理想变压器,原线圈接在正弦式交流电源上,输入电压随时间的变化图像给出,副线圈接了一个规格为“6V,3W”的灯泡,并且这个灯泡正常发光。我需要根据这些信息来判断几个选项的正误。
首先,来看选项A,原线圈两端电压的有效值是多少。从图乙中,我看到输入电压u随时间t变化的图像,最大电压是\(24\sqrt{2}\) V。因为是正弦式交流电,所以有效值应该是最大值除以根号2,也就是 \(24\sqrt{2} / \sqrt{2} = 24\) V。所以,原线圈两端电压的有效值是24V,而不是 \(24\sqrt{2}\) V。所以选项A是错误的。
接下来是选项B,副线圈中电流的有效值是多少。题目中说灯泡正常发光,它的规格是“6V,3W”,这意味着灯泡在额定电压下工作,消耗的功率是3W。根据功率公式 P = UI,可以求出电流 I = P / U = 3W / 6V = 0.5A。所以,副线圈中的电流有效值是0.5A,选项B是正确的。
最后是选项C,原、副线圈匝数之比是多少。理想变压器的电压比等于匝数比,即 \(n_1 / n_2 = U_1 / U_2\)。已知原线圈电压有效值 U1 = 24V,副线圈电压有效值 U2 = 6V(因为灯泡正常发光,所以副线圈电压等于灯泡额定电压)。所以,匝数比 \(n_1 / n_2 = 24 / 6 = 4 / 1\),也就是4:1,不是1:4。所以选项C是错误的。
综上所述,只有选项B是正确的。
不过,我再仔细检查一下,确保没有遗漏。首先,原线圈电压有效值确实是24V,这个没问题。副线圈电流是0.5A,这个也是对的。匝数比是4:1,不是1:4,所以C是错的。看来我的判断是对的,只有B是正确的。
嗯,再看看有没有其他需要考虑的地方。比如,变压器的功率是否守恒,也就是输入功率等于输出功率。副线圈负载是3W,那么原线圈的输入功率也应该 是3W。根据 P = UI,原线圈电流 I1 = P / U1 = 3W / 24V = 0.125A。这个信息虽然题目没问,但可以用来验证能量守恒。
总之,我认为选项B是正确的,而A和C是错误的。所以答案应该是B。
**答案**
B


化学

query: 图片中的滤液E是什么化学物质?

query: 回答图中问题

5. 如图甲所示,理想变压器原线圈接在正弦式交流电源上,输入电压 u 随时间 t 变化的图像如图乙所示,副线圈接规格为“6V,3W”的灯泡。若灯泡正常发光,下列说法正确的是( )
A. 原线圈两端电压的有效值为 \(24\sqrt{2}\) V
B. 副线圈中电流的有效值为 0.5A
C. 原、副线圈匝数之比为 1:4
首先,我需要理解这个题目。题目中有一个理想变压器,原线圈接在正弦式交流电源上,输入电压随时间的变化图像给出,副线圈接了一个规格为“6V,3W”的灯泡,并且这个灯泡正常发光。我需要根据这些信息来判断几个选项的正误。
首先,来看选项A,原线圈两端电压的有效值是多少。从图乙中,我看到输入电压u随时间t变化的图像,最大电压是\(24\sqrt{2}\) V。因为是正弦式交流电,所以有效值应该是最大值除以根号2,也就是 \(24\sqrt{2} / \sqrt{2} = 24\) V。所以,原线圈两端电压的有效值是24V,而不是 \(24\sqrt{2}\) V。所以选项A是错误的。
接下来是选项B,副线圈中电流的有效值是多少。题目中说灯泡正常发光,它的规格是“6V,3W”,这意味着灯泡在额定电压下工作,消耗的功率是3W。根据功率公式 P = UI,可以求出电流 I = P / U = 3W / 6V = 0.5A。所以,副线圈中的电流有效值是0.5A,选项B是正确的。
最后是选项C,原、副线圈匝数之比是多少。理想变压器的电压比等于匝数比,即 \(n_1 / n_2 = U_1 / U_2\)。已知原线圈电压有效值 U1 = 24V,副线圈电压有效值 U2 = 6V(因为灯泡正常发光,所以副线圈电压等于灯泡额定电压)。所以,匝数比 \(n_1 / n_2 = 24 / 6 = 4 / 1\),也就是4:1,不是1:4。所以选项C是错误的。
综上所述,只有选项B是正确的。
不过,我再仔细检查一下,确保没有遗漏。首先,原线圈电压有效值确实是24V,这个没问题。副线圈电流是0.5A,这个也是对的。匝数比是4:1,不是1:4,所以C是错的。看来我的判断是对的,只有B是正确的。
嗯,再看看有没有其他需要考虑的地方。比如,变压器的功率是否守恒,也就是输入功率等于输出功率。副线圈负载是3W,那么原线圈的输入功率也应该 是3W。根据 P = UI,原线圈电流 I1 = P / U1 = 3W / 24V = 0.125A。这个信息虽然题目没问,但可以用来验证能量守恒。
总之,我认为选项B是正确的,而A和C是错误的。所以答案应该是B。
**答案**
B


生活

少年宫在图书馆的什么方向

query: 少年宫在图书馆的什么方向

少年宫在图书馆的什么方向?
首先,我需要理解这个问题的背景。应该是一个地图或者是一个方位图,上面有各种建筑,比如图书馆、少年宫、学校等等。问题是在问少年宫相对于图书馆的方向。
既然有地图,那肯定有方向指示,比如通常地图上北向上,东向右,南向下,西向左。但是,为了更准确,我应该看看地图上是否有指南针或者方向标。
在题目中,我看到有“北”和“东”的方向标。北向上,东向右,那么南就向下,西向左。
现在,我需要找到图书馆和少年宫的位置。
从图上看,图书馆应该是在左边,有一个房子的图标,上面写着“图书馆”。
然后,少年宫也在左边,有一个类似宫殿的图标,上面写着“少年宫”。
看起来,少年宫和图书馆是在同一侧,都是在地图的左边。
我需要确定它们之间的相对位置。
从图上来看,图书馆似乎在上面一点,少年宫在下面一点。
但是,要确定方向,我需要根据地图的坐标系来判断。
假设地图是按照常规的北向上,东向右,南向下,西向左来绘制的。
那么,如果图书馆在上面,少年宫在下面,那么少年宫应该是在图书馆的南方。
但是,我需要确认一下地图的布局。
从图上看到,图书馆在左上角,少年宫在左下角,学校在中间,体育馆在上边中间,动物园在右上角,医院在左中间,邮局在右中间,电影院在右下角,商场在下边中间。
所以,根据这个布局,少年宫在图书馆的下方,也就是南方。
但是,可能还有其他的方向需要考虑,比如东南、西南等等。
我需要更精确地判断它们之间的方向关系。
从图上来看,图书馆和少年宫之间似乎有一条竖线,可能代表道路或者其他分界线。
如果图书馆在上面,少年宫在下面,那么少年宫应该是在图书馆的正南方。
但是,可能由于地图的比例尺或者建筑物的实际位置,可能会有偏差。
我需要根据地图上的比例尺或者距离来判断,但是从题目中没有给出具体的比例尺,所以可能只能根据图上的位置来大致判断。
另外,可能需要考虑实际的地理位置,比如这些地方可能在中国的某个城市,但是没有具体的信息。
所以,基于地图的布局,我判断少年宫在图书馆的正南方。
不过,为了确保答案的准确性,我应该再检查一下。
首先,确认方向标,北向上,东向右,南向下,西向左。
图书馆在左上角,少年宫在左下角,所以应该是南方。
如果地图有更详细的坐标或者距离信息,可能会更准确,但是目前只能根据位置来判断。
所以,最终的答案应该是少年宫在图书馆的正南方。
**答案**
少年宫在图书馆的正南方

query: I want to know the volume of this sofa

So I have this L-shaped sofa with dimensions provided, and I need to find its volume. The measurements are as follows:
- Length: 300 cm
- Width (both sections): 90 cm
- Depth (chaise section): 180 cm
First, I need to understand the shape and how it affects the volume calculation. An L-shaped sofa consists of two main parts: the straight section and the chaise lounge section.
Let me visualize this:
- The straight section is 300 cm in length and 90 cm in depth.
- The chaise section extends from the straight section, adding another 180 cm in depth and 90 cm in width.
To find the volume, I should consider the sofa as a combination of rectangular prisms.
Perhaps I can divide the sofa into two parts:
1. The straight section: a rectangular prism with dimensions 300 cm x 90 cm x 90 cm.
2. The chaise section: another rectangular prism with dimensions 180 cm x 90 cm x 90 cm.
Wait, but when I look at the dimensions, the chaise section is 180 cm in depth and 90 cm in width. However, since it's an L-shape, the width of the chaise section might overlap with the straight section.
Let me double-check the dimensions.
Looking at the image:
- The overall length is 300 cm.
- The width is 90 cm for both sections.
- The depth of the chaise is 180 cm.
I think the straight section is 300 cm in length and 90 cm in width, and the chaise section is 180 cm in depth and 90 cm in width, attached to the straight section.
In this case, the volume would be the sum of the volumes of these two sections.
First, calculate the volume of the straight section:
Volume_straight = length x width x height
Here, length = 300 cm, width = 90 cm, and height = 90 cm.
Volume_straight = 300 cm x 90 cm x 90 cm
Wait, but I need to confirm if the height is indeed 90 cm. The image shows a vertical dimension of 90 cm, which could be the height.
So, Volume_straight = 300 cm x 90 cm x 90 cm
Similarly, for the chaise section:
Volume_chaise = depth x width x height
Depth = 180 cm, width = 90 cm, height = 90 cm.
Volume_chaise = 180 cm x 90 cm x 90 cm
Then, the total volume would be Volume_total = Volume_straight + Volume_chaise
Let me calculate that.
First, Volume_straight = 300 cm x 90 cm x 90 cm = 2,430,000 cubic cm
Second, Volume_chaise = 180 cm x 90 cm x 90 cm = 1,458,000 cubic cm
Total volume = 2,430,000 + 1,458,000 = 3,888,000 cubic cm
But, I should consider if there's any overlap or shared volume between the two sections.
Looking back, in an L-shape, the chaise section shares some space with the straight section, so perhaps simply adding the volumes isn't accurate.
Maybe I should think of the entire sofa as a single rectangular prism with length 300 cm, width 180 cm (since the chaise adds 180 cm to the width), and height 90 cm.
Wait, but the width of the straight section is 90 cm, and the chaise adds another 90 cm to the width, making the total width 180 cm.
So, total dimensions would be:
Length: 300 cm
Width: 180 cm
Height: 90 cm
Therefore, total volume = length x width x height = 300 cm x 180 cm x 90 cm = 4,860,000 cubic cm
However, this seems larger than the previous calculation. Which one is correct?
Let me think again.
Option 1: Sum of two separate volumes:
Volume_straight + Volume_chaise = 2,430,000 + 1,458,000 = 3,888,000 cubic cm
Option 2: Entire sofa as one big rectangular prism:
Volume_total = 300 cm x 180 cm x 90 cm = 4,860,000 cubic cm
But this seems incorrect because it's overcounting the shared space where the two sections meet.
So, Option 1 is more accurate.
Alternatively, perhaps I need to consider the chaise section as an extension that doesn't add its full volume but only the additional volume it provides.
Wait, maybe I should subtract the overlapping volume.
Let me try another approach.
Consider the straight section as a rectangular prism: 300 cm x 90 cm x 90 cm.
The chaise section extends 180 cm in depth and 90 cm in width, but since it's attached to the straight section, there is an overlap in width.
Actually, in an L-shape, the chaise section shares the width with the straight section, so the additional volume added by the chaise is only the part that doesn't overlap.
Wait, this is getting complicated.
Maybe I should look at it differently.
Let's consider the entire base area first.
The base of the sofa would be the area in contact with the floor.
The straight section is 300 cm in length and 90 cm in width.
The chaise section adds another 180 cm in depth, making the total width 90 cm + 180 cm = 270 cm.
Wait, no, if the straight section is 300 cm in length and 90 cm in width, and the chaise adds 180 cm in depth, then the base area would be a rectangle of 300 cm x 180 cm.
But that doesn't account for the L-shape properly.
Alternatively, perhaps the base is L-shaped, with one side 300 cm and the other 180 cm, intersecting at a corner.
In that case, the total base area would be:
Area_base = (300 cm x 90 cm) + (180 cm x 90 cm) - (overlap area)
But what is the overlap area?
If the chaise section is attached to the straight section, the overlap would be the area where they connect.
Assuming they connect at a 90-degree angle, the overlap would be a square of side 90 cm.
Therefore, Area_overlap = 90 cm x 90 cm = 8,100 square cm
Thus, Area_base = (300 cm x 90 cm) + (180 cm x 90 cm) - 8,100 square cm
Calculate that:
(27,000 square cm) + (16,200 square cm) = 43,200 square cm
Minus 8,100 square cm = 35,100 square cm
Then, the height is 90 cm, so Volume_total = Area_base x height = 35,100 square cm x 90 cm = 3,159,000 cubic cm
This is different from both previous calculations.
Which one is correct?
I think this method accounts for the overlap properly.
Alternatively, perhaps I can use integration to find the volume, but that might be overkill for this problem.
Wait, another way: divide the sofa into smaller rectangular prisms whose volumes can be added up accurately.
Let's try that.
Divide the sofa into three parts:
1. The main seat section: 300 cm x 90 cm x 90 cm
2. The chaise section: 180 cm x 90 cm x 90 cm
3. Subtract the overlapping part: 90 cm x 90 cm x 90 cm
Then, Volume_total = (300 cm x 90 cm x 90 cm) + (180 cm x 90 cm x 90 cm) - (90 cm x 90 cm x 90 cm)
Calculate each part:
Volume_main = 300 cm x 90 cm x 90 cm = 2,430,000 cubic cm
Volume_chaise = 180 cm x 90 cm x 90 cm = 1,458,000 cubic cm
Volume_overlap = 90 cm x 90 cm x 90 cm = 729,000 cubic cm
Therefore, Volume_total = 2,430,000 + 1,458,000 - 729,000 = 3,159,000 cubic cm
This matches the previous calculation using the base area method.
So, the correct volume is 3,159,000 cubic cm.
But wait, earlier I thought the total base area was 35,100 square cm multiplied by 90 cm, which gives 3,159,000 cubic cm.
Yes, that seems consistent.
Therefore, the volume of the sofa is 3,159,000 cubic cm.
**Final Answer**
\[ \boxed{3159000\ \text{cubic cm}} \]


QVQ-72B-Preview,由Qwen团队精心打造的实验性研究模型,致力于在视觉推理领域取得突破。该模型通过先进的深度学习和多模态处理技术,能够理解和分析视觉信息,从而在图像识别、场景理解等任务中展现出卓越的性能。它不仅推动了人工智能在视觉识别和理解方面的进步,也为未来的研究和应用开辟了新的可能性,尤其是在需要高度视觉推理能力的领域。QVQ-72B-Preview的问世,标志着AI视觉推理能力的一个重要里程碑,为智能系统的进一步发展奠定了坚实的基础。


朝AGI进发

Qwen团队的愿景是开发一个「全能」和「智能」的模型,为了实现这一目标,他们正在增强视觉语言基础模型,赋予其基于视觉信息的深度思考和推理的高级能力。在不久的将来,计划将更多的模态整合到一个统一的模型中,使其更加智能,能够应对复杂的挑战并参与科学探索。

相关文章
|
7天前
|
调度 云计算 芯片
云超算技术跃进,阿里云牵头制定我国首个云超算国家标准
近日,由阿里云联合中国电子技术标准化研究院主导制定的首个云超算国家标准已完成报批,不久后将正式批准发布。标准规定了云超算服务涉及的云计算基础资源、资源管理、运行和调度等方面的技术要求,为云超算服务产品的设计、实现、应用和选型提供指导,为云超算在HPC应用和用户的大范围采用奠定了基础。
179585 20
|
14天前
|
存储 运维 安全
云上金融量化策略回测方案与最佳实践
2024年11月29日,阿里云在上海举办金融量化策略回测Workshop,汇聚多位行业专家,围绕量化投资的最佳实践、数据隐私安全、量化策略回测方案等议题进行深入探讨。活动特别设计了动手实践环节,帮助参会者亲身体验阿里云产品功能,涵盖EHPC量化回测和Argo Workflows量化回测两大主题,旨在提升量化投研效率与安全性。
云上金融量化策略回测方案与最佳实践
|
16天前
|
人工智能 自然语言处理 前端开发
从0开始打造一款APP:前端+搭建本机服务,定制暖冬卫衣先到先得
通义灵码携手科技博主@玺哥超carry 打造全网第一个完整的、面向普通人的自然语言编程教程。完全使用 AI,再配合简单易懂的方法,只要你会打字,就能真正做出一个完整的应用。
9375 23
|
20天前
|
Cloud Native Apache 流计算
资料合集|Flink Forward Asia 2024 上海站
Apache Flink 年度技术盛会聚焦“回顾过去,展望未来”,涵盖流式湖仓、流批一体、Data+AI 等八大核心议题,近百家厂商参与,深入探讨前沿技术发展。小松鼠为大家整理了 FFA 2024 演讲 PPT ,可在线阅读和下载。
5051 15
资料合集|Flink Forward Asia 2024 上海站
|
20天前
|
自然语言处理 数据可视化 API
Qwen系列模型+GraphRAG/LightRAG/Kotaemon从0开始构建中医方剂大模型知识图谱问答
本文详细记录了作者在短时间内尝试构建中医药知识图谱的过程,涵盖了GraphRAG、LightRAG和Kotaemon三种图RAG架构的对比与应用。通过实际操作,作者不仅展示了如何利用这些工具构建知识图谱,还指出了每种工具的优势和局限性。尽管初步构建的知识图谱在数据处理、实体识别和关系抽取等方面存在不足,但为后续的优化和改进提供了宝贵的经验和方向。此外,文章强调了知识图谱构建不仅仅是技术问题,还需要深入整合领域知识和满足用户需求,体现了跨学科合作的重要性。
|
28天前
|
人工智能 自动驾驶 大数据
预告 | 阿里云邀您参加2024中国生成式AI大会上海站,马上报名
大会以“智能跃进 创造无限”为主题,设置主会场峰会、分会场研讨会及展览区,聚焦大模型、AI Infra等热点议题。阿里云智算集群产品解决方案负责人丛培岩将出席并发表《高性能智算集群设计思考与实践》主题演讲。观众报名现已开放。
|
16天前
|
人工智能 容器
三句话开发一个刮刮乐小游戏!暖ta一整个冬天!
本文介绍了如何利用千问开发一款情侣刮刮乐小游戏,通过三步简单指令实现从单个功能到整体框架,再到多端优化的过程,旨在为生活增添乐趣,促进情感交流。在线体验地址已提供,鼓励读者动手尝试,探索编程与AI结合的无限可能。
三句话开发一个刮刮乐小游戏!暖ta一整个冬天!
|
15天前
|
消息中间件 人工智能 运维
12月更文特别场——寻找用云高手,分享云&AI实践
我们寻找你,用云高手,欢迎分享你的真知灼见!
1189 72