MaxFrame产品最佳实践测评

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 随着大数据和人工智能的发展,阿里云推出MaxCompute MaxFrame,专为Python开发者设计的分布式计算框架。本文通过最佳实践测评,探讨MaxFrame在分布式Pandas处理和大语言模型数据处理中的表现,展示其在提升数据分析效率、加速AI模型开发周期和促进跨部门协作方面的潜力。

引言

随着大数据和人工智能技术的迅猛发展,数据处理的需求日益增长。阿里云推出的MaxCompute MaxFrame(简称“MaxFrame”)是一个专为Python开发者设计的分布式计算框架,它不仅支持Python编程接口,还能直接利用MaxCompute的云原生大数据计算资源和服务。本文将通过一系列最佳实践测评,探讨MaxFrame在分布式Pandas处理以及大语言模型数据处理场景中的表现,并分析其在实际工作中的应用潜力。


一、MaxFrame产品最佳实践测评

1.1 分布式Pandas处理的最佳实践

环境准备

为了实现基于MaxFrame的分布式Pandas处理,首先需要确保环境已经正确配置了MaxCompute服务,并安装了必要的Python库。以下是环境搭建的基本步骤:

# 安装maxcompute-python-sdk
pip install pyodps

# 安装其他依赖项如pandas等
pip install pandas numpy
数据准备

在安装了MaxFrame的Python环境下运行如下脚本,准备测试表和测试数据。

from odps import ODPS
from maxframe.session import new_session
import maxframe.dataframe as md
import pandas as pd
import os

o = ODPS(
    os.getenv('ALIBABA_CLOUD_ACCESS_KEY_ID'),
    os.getenv('ALIBABA_CLOUD_ACCESS_KEY_SECRET'),
    project='your-default-project',
    endpoint='your-end-point',
)

data_sets = [{
   
    "table_name": "product",
    "table_schema" : "index bigint, product_id bigint, product_name string, current_price bigint",
    "source_type": "records",
    "records" : [
        [1, 100, 'Nokia', 1000],
        [2, 200, 'Apple', 5000],
        [3, 300, 'Samsung', 9000]
    ],
},
{
   
    "table_name" : "sales",
    "table_schema" : "index bigint, sale_id bigint, product_id bigint, user_id bigint, year bigint, quantity bigint, price bigint",
    "source_type": "records",
    "records" : [
        [1, 1, 100, 101, 2008, 10, 5000],
        [2, 2, 300, 101, 2009, 7, 4000],
        [3, 4, 100, 102, 2011, 9, 4000],
        [4, 5, 200, 102, 2013, 6, 6000],
        [5, 8, 300, 102, 2015, 10, 9000],
        [6, 9, 100, 102, 2015, 6, 2000]
    ],
    "lifecycle": 5
}]

def prepare_data(o: ODPS, data_sets, suffix="", drop_if_exists=False):
    for index, data in enumerate(data_sets):
        table_name = data.get("table_name")
        table_schema = data.get("table_schema")
        source_type = data.get("source_type")

        if not table_name or not table_schema or not source_type:
            raise ValueError(f"Dataset at index {index} is missing one or more required keys: 'table_name', 'table_schema', or 'source_type'.")

        lifecycle = data.get("lifecycle", 5)
        table_name += suffix

        print(f"Processing {table_name}...")
        if drop_if_exists:
            print(f"Deleting {table_name}...")
            o.delete_table(table_name, if_exists=True)

        o.create_table(name=table_name, table_schema=table_schema, lifecycle=lifecycle, if_not_exists=True)

        if source_type == "local_file":
            file_path = data.get("file")
            if not file_path:
                raise ValueError(f"Dataset at index {index} with source_type 'local_file' is missing the 'file' key.")
            sep = data.get("sep", ",")
            pd_df = pd.read_csv(file_path, sep=sep)
            ODPSDataFrame(pd_df).persist(table_name, drop_table=True)
        elif source_type == 'records':
            records = data.get("records")
            if not records:
                raise ValueError(f"Dataset at index {index} with source_type 'records' is missing the 'records' key.")
            with o.get_table(table_name).open_writer() as writer:
                writer.write(records)
        else:
            raise ValueError(f"Unknown data set source_type: {source_type}")

        print(f"Processed {table_name} Done")

prepare_data(o, data_sets, "_maxframe_demo", True)
使用MaxFrame进行分布式处理

以下代码展示了如何使用MaxFrame执行分布式操作,例如过滤和聚合。

from odps import ODPS
from odps.df import DataFrame

# 初始化ODPS客户端
odps = ODPS('', '', '', endpoint='')

# 将本地pandas DataFrame转换为MaxCompute DataFrame
max_df = DataFrame(df)

# 执行分布式过滤操作
filtered_df = max_df[max_df['value'] > 0.5]

# 执行分布式聚合操作
aggregated_df = filtered_df.groupby('id').agg({
   'value': 'sum'})

# 将结果转换回pandas DataFrame查看
result = aggregated_df.to_pandas()
print(result)
性能评估

通过比较相同任务在单机环境下的执行时间和在MaxFrame上的执行时间,可以评估MaxFrame的性能。通常情况下,对于大规模数据集,MaxFrame能够显著缩短处理时间。


1.2 大语言模型数据处理的最佳实践

数据预处理

在训练大型语言模型时,数据预处理是非常重要的一步。MaxFrame可以帮助加速这一过程,特别是当处理海量文本数据时。

from odps import ODPS
from odps.df import DataFrame

# 假设有一个包含文本数据的大表
text_data = odps.get_table('large_text_corpus')

# 使用MaxFrame读取表格内容
text_df = DataFrame(text_data)

# 对文本进行初步清理(去除HTML标签、特殊字符等)
cleaned_text_df = text_df.map(lambda row: (row.id, clean_html(row.text)), schema='id string, cleaned_text string')

# 存储清理后的数据到新表中
cleaned_text_df.persist('cleaned_large_text_corpus')

二、MaxFrame在公司/工作/学习中的作用

2.1 提升数据分析效率

MaxFrame使得数据科学家和工程师能够在熟悉的Python环境中高效地处理大规模数据集,而无需担心底层基础设施的问题。

2.2 加速AI模型开发周期

MaxFrame提供了强大的工具链来支持从数据收集到模型部署的整个生命周期。

2.3 促进跨部门协作

MaxFrame与MaxCompute Notebook、镜像管理等功能紧密结合,形成了完整的Python开发生态系统。

2.4 支持创新应用探索

MaxFrame为企业和个人开发者提供了一个理想的平台去尝试新的想法和技术。


常见问题

问题1:报错invalid type INT for function UDF definition

解决方案:通过Flag开启MaxCompute 2.0数据类型。

from maxframe import config
config.options.sql.settings = {
   
    "odps.sql.type.system.odps2": "true"
}

问题2:报错UDF : No module named 'cloudpickle'

解决方案:引用MaxCompute基础镜像。

from maxframe import config
config.options.sql.settings = {
   
    "odps.session.image": "common",
}

问题3:如何在DataFrame提交的UDF中实现资源复用?

解决方案:利用Python中函数参数默认值只被初始化一次的特性。

def predict(s, _ctx={
   }):
    from ultralytics import YOLO
    if not _ctx.get("model", None):
        model = YOLO(os.path.join("./", "yolo11n.pt"))
        _ctx["model"] = model
    model = _ctx["model"]

总结

通过对MaxFrame产品的深入体验和评测,我们可以看到它不仅是一个强大的分布式计算框架,而且是连接大数据和AI领域的桥梁。无论是在提升数据分析效率、加速AI模型开发周期,还是促进跨部门协作方面,MaxFrame都展现出了巨大的潜力。未来,随着更多功能的不断加入和完善,相信MaxFrame将继续引领云计算时代的创新发展潮流。

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
11月前
|
SQL 分布式计算 DataWorks
DataWorks产品测评|基于DataWorks和MaxCompute产品组合实现用户画像分析
本文介绍了如何使用DataWorks和MaxCompute产品组合实现用户画像分析。首先,通过阿里云官网开通DataWorks服务并创建资源组,接着创建MaxCompute项目和数据源。随后,利用DataWorks的数据集成和数据开发模块,将业务数据同步至MaxCompute,并通过ODPS SQL完成用户画像的数据加工,最终将结果写入`ads_user_info_1d`表。文章详细记录了每一步的操作过程,包括任务开发、运行、运维操作和资源释放,帮助读者顺利完成用户画像分析。此外,还指出了文档中的一些不一致之处,并提供了相应的解决方法。
|
人工智能 Rust Java
10月更文挑战赛火热启动,坚持热爱坚持创作!
开发者社区10月更文挑战,寻找热爱技术内容创作的你,欢迎来创作!
2737 44
|
人工智能 监控 机器人
阿里云开发者社区博文规范及指引
阿里云开发者社区博文规范及指引
3291 24
阿里云开发者社区博文规范及指引
|
8月前
|
人工智能 搜索推荐 算法
谁是AI搜索先锋? Elastic先锋者招募令正式启动!
阿里云 x Elastic 携手推出“Elastic Pioneer”先锋者计划,开发者们可以通过贡献内容获取积分,赢取月度和年度奖励,包括 ElasticON 新加坡站门票及与技术大咖交流机会。
447 2
|
11月前
|
JSON 分布式计算 数据处理
加速数据处理与AI开发的利器:阿里云MaxFrame实验评测
随着数据量的爆炸式增长,传统数据分析方法逐渐显现出局限性。Python作为数据科学领域的主流语言,因其简洁易用和丰富的库支持备受青睐。阿里云推出的MaxFrame是一个专为Python开发者设计的分布式计算框架,旨在充分利用MaxCompute的强大能力,提供高效、灵活且易于使用的工具,应对大规模数据处理需求。MaxFrame不仅继承了Pandas等流行数据处理库的友好接口,还通过集成先进的分布式计算技术,显著提升了数据处理的速度和效率。
|
11月前
|
SQL DataWorks 数据可视化
阿里云DataWorks评测:大数据开发治理平台的卓越表现
阿里云DataWorks是一款集数据集成、开发、分析与管理于一体的大数据平台,支持多种数据源无缝整合,提供可视化ETL工具和灵活的任务调度机制。其内置的安全体系和丰富的插件生态,确保了数据处理的高效性和安全性。通过实际测试,DataWorks展现了强大的计算能力和稳定性,适用于中小企业快速搭建稳定高效的BI系统。未来,DataWorks将继续优化功能,降低使用门槛,并推出更多灵活的定价方案,助力企业实现数据价值最大化。
|
11月前
|
分布式计算 DataWorks 搜索推荐
DataWorks产品评测:大数据开发治理平台的最佳实践与体验
DataWorks是阿里云推出的一款大数据开发治理平台,集成了多种大数据引擎,支持数据集成、开发、分析和任务调度。本文通过用户画像分析的最佳实践,评测了DataWorks的功能和使用体验,并提出了优化建议。通过实践,DataWorks在数据整合、清洗及可视化方面表现出色,适合企业高效管理和分析数据。
440 0
|
11月前
|
消息中间件 人工智能 运维
12月更文特别场——寻找用云高手,分享云&AI实践
我们寻找你,用云高手,欢迎分享你的真知灼见!
3981 101
|
8月前
|
机器学习/深度学习 人工智能 自然语言处理
云上一键部署通义千问 QwQ-32B 模型,阿里云 PAI 最佳实践
3月6日阿里云发布并开源了全新推理模型通义千问 QwQ-32B,在一系列权威基准测试中,千问QwQ-32B模型表现异常出色,几乎完全超越了OpenAI-o1-mini,性能比肩Deepseek-R1,且部署成本大幅降低。并集成了与智能体 Agent 相关的能力,够在使用工具的同时进行批判性思考,并根据环境反馈调整推理过程。阿里云人工智能平台 PAI-Model Gallery 现已经支持一键部署 QwQ-32B,本实践带您部署体验专属 QwQ-32B模型服务。
|
11月前
|
人工智能 分布式计算 大数据
MaxFrame 产品评测
MaxFrame 是一款连接大数据和 AI 的 Python 分布式计算框架。本文介绍了其在实际使用中的表现,包括便捷的安装配置、强大的分布式 Pandas 处理能力和高效的大语言模型数据处理。文章还对比了 MaxFrame 与 Apache Spark 和 Dask 的优劣,并提出了未来发展的建议,旨在为读者提供全面的评测参考。
257 22