基于yolov4深度学习网络的公共场所人流密度检测系统matlab仿真,带GUI界面

简介: 本项目使用 MATLAB 2022a 进行 YOLOv4 算法仿真,实现公共场所人流密度检测。通过卷积神经网络提取图像特征,将图像划分为多个网格进行目标检测和识别,最终计算人流密度。核心程序包括图像和视频读取、处理和显示功能。仿真结果展示了算法的有效性和准确性。

1.算法仿真效果
matlab2022a仿真结果如下(完整代码运行后无水印):

1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg

仿真操作步骤可参考程序配套的操作视频。

2.算法涉及理论知识概要
YOLOv4 是一种先进的目标检测算法,将其应用于公共场所人流密度检测系统具有高效、准确的特点。以下是该系统的详细原理:

特征提取:

   使用卷积神经网络(CNN)对输入的图像进行特征提取。CNN 由多个卷积层和池化层组成,卷积层通过卷积核与输入图像进行卷积操作,提取图像的局部特征,如边缘、纹理、颜色等。池化层则用于降低特征图的分辨率,减少计算量和参数数量,同时保留主要的特征信息。常见的池化方法有最大池化和平均池化。

   随着网络的深入,提取到的特征逐渐从低级特征(如简单的边缘和纹理)转变为高级特征(如物体的形状、轮廓等)。这些高级特征对于准确检测人流中的个体非常重要。
AI 代码解读

网格划分与预测:

   将输入图像划分为多个网格(grid cell)。每个网格负责预测落入该网格内的物体的相关信息,包括物体的边界框(bounding box)位置、类别概率等。例如,如果将图像划分为 7x7 的网格,那么就有 49 个网格单元,每个网格单元都可以预测是否存在物体以及物体的具体信息。

   对于每个网格,YOLOv4 会预测多个边界框。每个边界框包含了物体的位置信息,通常用中心点坐标(x, y)、宽度(w)和高度(h)来表示。这些预测的边界框可以覆盖整个图像的不同区域,以确保能够检测到不同位置和大小的物体。
AI 代码解读

目标检测与识别:

   将公共场所的图像输入到基于 YOLOv4 的检测系统中,系统首先利用上述的特征提取、网格划分和预测过程,检测出图像中的行人。通过对行人的边界框位置和类别概率的预测,可以准确地识别出图像中的行人个体。

  在检测过程中,YOLOv4 会利用预训练的模型权重。预训练模型是在大规模的图像数据集上进行训练得到的,已经学习到了通用的图像特征和物体的模式,因此可以快速准确地对新的图像进行检测。
AI 代码解读

人流密度计算:

   基于检测到的行人边界框信息,可以计算人流密度。一种简单的方法是统计图像中检测到的行人数量,并根据图像的面积或特定的检测区域面积来计算行人的密度。例如,如果在一个 100 平方米的区域内检测到了 50 个人,那么人流密度可以表示为 0.5 人/平方米。

  为了提高人流密度计算的准确性,可以对图像进行分区域计算。将图像划分为多个小区域,分别计算每个区域内的人流密度,然后综合考虑各个区域的密度情况,得到整个公共场所的人流密度分布。这样可以更细致地了解不同区域的人流情况,对于发现人流密集区域和潜在的安全隐患非常有帮助。

   基于 YOLOv4 的公共场所人流密度检测系统通过深度学习技术,能够快速准确地检测出公共场所中的行人,并计算出人流密度,为公共场所的管理和安全保障提供了有力的支持。在实际应用中,还需要对系统进行不断的优化和调整,以适应不同的场景和需求。
AI 代码解读

3.MATLAB核心程序
```% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @tops_OpeningFcn, ...
'gui_OutputFcn', @tops_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before tops is made visible.
function tops_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to tops (see VARARGIN)

% Choose default command line output for tops
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes tops wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.
function varargout = tops_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% --- Executes on button press in pushbutton7.
function pushbutton7_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton7 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global im;
global str;
global flag1;
global flag2;
cla (handles.axes1,'reset')

axes(handles.axes1);
set(handles.edit12,'string','图片读取中......');

[name,dir,index]=uigetfile({'*.jpg'},'图片视频');
if index==1 %如果选择打开文件
str=[dir name]; %字符串拼接
im=imread(str); %读取图片,保存到全局变量中。
axes(handles.axes1);
imshow(im);
end
set(handles.edit12,'string','图片读取完毕.....');

flag1=1;
flag2=0;

% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global v;
global str;
global flag1;
global flag2;
cla (handles.axes1,'reset')

axes(handles.axes1);
set(handles.edit12,'string','视频读取中......');

[name,dir,index]=uigetfile({'*.avi'},'选择视频');
if index==1 %如果选择打开文件
str=[dir name]; %字符串拼接
v=VideoReader(str); %读取图片,保存到全局变量中。
axes(handles.axes1);

video1 = readFrame(v);%读取视频帧的图像像素数据
[rr,cc,kk] = size(video1);
imshow(video1);

end
set(handles.edit12,'string','视频读取完毕.....');

flag1=0;
flag2=1;

% --- Executes on button press in pushbutton2.
function pushbutton2_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global v;
global im;
global str;
global flag1;
global flag2;
0Y_030m
```

目录
打赏
0
31
31
0
242
分享
相关文章
相控阵雷达电特性matlab模拟与仿真,带GUI界面,对比有限扫描阵,稀疏阵,多波束阵,共形阵等
本课题基于MATLAB2022a实现相控阵雷达天线电特性仿真,含GUI界面,对比有限扫描阵、稀疏阵、多波束阵及共形阵等不同类型天线的性能。相控阵雷达通过控制辐射单元的相位和幅度实现波束快速扫描与指向,广泛应用于军事和民用领域。系统具备高分辨率、多功能、抗干扰强等特点。仿真结果完整无水印,核心程序涵盖多种阵列模型,展示不同阵列的电特性和应用场景,为相控阵天线研究提供参考。
基于AES的图像加解密算法matlab仿真,带GUI界面
本程序基于AES算法实现图像的加解密功能,并提供MATLAB GUI界面操作,支持加密与解密。运行环境为MATLAB 2022A,测试结果无水印。核心代码通过按钮回调函数完成AES加密与解密流程,包括字节替换、行移位、列混淆及密钥加等步骤。解密过程为加密逆向操作,确保数据安全性与完整性。完整程序结合128位块加密与可选密钥长度,适用于图像信息安全场景。
基于MobileNet深度学习网络的活体人脸识别检测算法matlab仿真
本内容主要介绍一种基于MobileNet深度学习网络的活体人脸识别检测技术及MQAM调制类型识别方法。完整程序运行效果无水印,需使用Matlab2022a版本。核心代码包含详细中文注释与操作视频。理论概述中提到,传统人脸识别易受非活体攻击影响,而MobileNet通过轻量化的深度可分离卷积结构,在保证准确性的同时提升检测效率。活体人脸与非活体在纹理和光照上存在显著差异,MobileNet可有效提取人脸高级特征,为无线通信领域提供先进的调制类型识别方案。
基于MobileNet深度学习网络的MQAM调制类型识别matlab仿真
本项目基于Matlab2022a实现MQAM调制类型识别,使用MobileNet深度学习网络。完整程序运行效果无水印,核心代码含详细中文注释和操作视频。MQAM调制在无线通信中至关重要,MobileNet以其轻量化、高效性适合资源受限环境。通过数据预处理、网络训练与优化,确保高识别准确率并降低计算复杂度,为频谱监测、信号解调等提供支持。
基于图像形态学处理的移动物体目标跟踪和质心提取matlab仿真,带GUI界面
本项目展示了一种基于图像形态学处理的移动物体目标跟踪和质心提取算法。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释及操作视频。算法通过多帧图像像素值求平均、中值法或高斯混合模型估计背景,结合形态学处理(开闭运算、阈值处理)去除噪声并优化目标检测,提高准确性。颜色直方图匹配用于目标跟踪,结构元素膨胀操作扩大搜索范围,增强鲁棒性。
深度学习在安全事件检测中的应用:守护数字世界的利器
深度学习在安全事件检测中的应用:守护数字世界的利器
266 22
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
524 6
深度学习在DOM解析中的应用:自动识别页面关键内容区块
本文探讨了如何通过深度学习模型优化东方财富吧财经新闻爬虫的性能。针对网络请求、DOM解析与模型推理等瓶颈,采用代理复用、批量推理、多线程并发及模型量化等策略,将单页耗时从5秒优化至2秒,提升60%以上。代码示例涵盖代理配置、TFLite模型加载、批量预测及多线程抓取,确保高效稳定运行,为大规模数据采集提供参考。
计算机视觉五大技术——深度学习在图像处理中的应用
深度学习利用多层神经网络实现人工智能,计算机视觉是其重要应用之一。图像分类通过卷积神经网络(CNN)判断图片类别,如“猫”或“狗”。目标检测不仅识别物体,还确定其位置,R-CNN系列模型逐步优化检测速度与精度。语义分割对图像每个像素分类,FCN开创像素级分类范式,DeepLab等进一步提升细节表现。实例分割结合目标检测与语义分割,Mask R-CNN实现精准实例区分。关键点检测用于人体姿态估计、人脸特征识别等,OpenPose和HRNet等技术推动该领域发展。这些方法在效率与准确性上不断进步,广泛应用于实际场景。
468 64
计算机视觉五大技术——深度学习在图像处理中的应用
深入探索:深度学习在时间序列预测中的强大应用与实现
时间序列分析是数据科学和机器学习中一个重要的研究领域,广泛应用于金融市场、天气预报、能源管理、交通预测、健康监控等多个领域。时间序列数据具有顺序相关性,通常展示出时间上较强的依赖性,因此简单的传统回归模型往往不能捕捉其中复杂的动态特征。深度学习通过其非线性建模能力和层次结构的特征提取能力,能够有效地捕捉复杂的时间相关性和非线性动态变化模式,从而在时间序列分析中展现出极大的潜力。
AI助理
登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问

你好,我是AI助理

可以解答问题、推荐解决方案等