CosyVoice 2.0:阿里开源升级版语音生成大模型,支持多语言和跨语言语音合成,提升发音和音色等的准确性

简介: CosyVoice 2.0 是阿里巴巴通义实验室推出的语音生成大模型升级版,通过有限标量量化技术和块感知因果流匹配模型,显著提升了发音准确性、音色一致性和音质,支持多语言和流式推理,适合实时语音合成场景。

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


🚀 快速阅读

  1. 功能:支持超低延迟的流式语音合成,首包合成延迟仅150ms。
  2. 性能:发音准确性显著提升,音色一致性和韵律自然度大幅改善。
  3. 技术:采用全尺度量化和离线流式一体化建模,支持多语言和指令可控的音频生成。

正文(附运行示例)

CosyVoice 2.0 是什么

公众号: 蚝油菜花 - CosyVoice

CosyVoice 2.0 是阿里巴巴通义实验室推出的语音生成大模型升级版,旨在通过有限标量量化技术和块感知因果流匹配模型,提升语音合成的质量。该模型简化了文本-语音语言模型架构,支持多样的合成场景,并在发音准确性、音色一致性、韵律和音质上都有显著提升。

相比前版本,CosyVoice 2.0 的MOS评测分从5.4提升到5.53,支持流式推理,大幅降低首包合成延迟至150ms,适合实时语音合成场景。此外,它还支持多语言和跨语言语音合成,能够满足不同应用场景的需求。

CosyVoice 2.0 的主要功能

  • 超低延迟的流式语音合成:支持双向流式语音合成,首包合成延迟可达150ms,适合实时应用场景。
  • 高准确度的发音:相比前版本,发音错误率显著下降,尤其在处理绕口令、多音字、生僻字上表现突出。
  • 音色一致性:在零样本和跨语言语音合成中保持音色高度一致性,提升合成自然度。
  • 自然体验:合成音频的韵律、音质、情感匹配得到提升,MOS评测分提高,接近商业化语音合成大模型。
  • 多语言支持:在大规模多语言数据集上训练,实现跨语言的语音合成能力。

CosyVoice 2.0 的技术原理

  • LLM backbone:基于预训练的文本基座大模型(如Qwen2.5-0.5B),替换原有的Text Encoder + random Transformer结构,进行文本的语义建模。
  • FSQ Speech Tokenizer:用全尺度量化(FSQ)替换向量量化(VQ),训练更大的码本(6561),实现100%激活,提升发音准确性。
  • 离线和流式一体化建模方案:提出一体化建模方案,让LLM和FM均支持流式推理,实现快速合成首包音频。
  • 指令可控的音频生成能力升级:优化基模型和指令模型的整合,支持情感、说话风格和细粒度控制指令,新增中文指令处理能力。
  • 多模态大模型技术:基于多模态大模型技术,实现语音识别、语音合成、自然语言理解等AI技术,提供“能听、会说、懂你”式的智能人机交互体验。

如何运行 CosyVoice 2.0

环境配置

  1. 克隆仓库并安装依赖:

    git clone --recursive https://github.com/FunAudioLLM/CosyVoice.git
    cd CosyVoice
    git submodule update --init --recursive
    
  2. 创建 Conda 环境并安装依赖:

    conda create -n cosyvoice python=3.10
    conda activate cosyvoice
    conda install -y -c conda-forge pynini==2.1.5
    pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/ --trusted-host=mirrors.aliyun.com
    

模型下载

from modelscope import snapshot_download
snapshot_download('iic/CosyVoice2-0.5B', local_dir='pretrained_models/CosyVoice2-0.5B')
snapshot_download('iic/CosyVoice-300M', local_dir='pretrained_models/CosyVoice-300M')

基本使用

from cosyvoice.cli.cosyvoice import CosyVoice2
cosyvoice = CosyVoice2('pretrained_models/CosyVoice2-0.5B', load_jit=True, load_onnx=False, load_trt=False)

# 零样本推理
prompt_speech_16k = load_wav('zero_shot_prompt.wav', 16000)
for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', prompt_speech_16k, stream=False)):
    torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

相关实践学习
达摩院智能语音交互 - 声纹识别技术
声纹识别是基于每个发音人的发音器官构造不同,识别当前发音人的身份。按照任务具体分为两种: 声纹辨认:从说话人集合中判别出测试语音所属的说话人,为多选一的问题 声纹确认:判断测试语音是否由目标说话人所说,是二选一的问题(是或者不是) 按照应用具体分为两种: 文本相关:要求使用者重复指定的话语,通常包含与训练信息相同的文本(精度较高,适合当前应用模式) 文本无关:对使用者发音内容和语言没有要求,受信道环境影响比较大,精度不高 本课程主要介绍声纹识别的原型技术、系统架构及应用案例等。 讲师介绍: 郑斯奇,达摩院算法专家,毕业于美国哈佛大学,研究方向包括声纹识别、性别、年龄、语种识别等。致力于推动端侧声纹与个性化技术的研究和大规模应用。
相关文章
|
6月前
|
人工智能 API 语音技术
EmotiVoice:网易开源AI语音合成黑科技,2000+音色情感可控
EmotiVoice是网易有道开源的多语言语音合成系统,支持中英文2000多种音色,通过提示词控制情感输出,提供Web界面和API接口,具备语音克隆等先进功能。
533 43
EmotiVoice:网易开源AI语音合成黑科技,2000+音色情感可控
|
9月前
|
自然语言处理 语音技术 开发工具
CosyVoice再升级,可扩展流式语音合成
通义实验室在前期的工作中提出了基于监督离散语音标记的多语言语音合成模型CosyVoice。通过使用两种流行的生成模型:语言模型 (LM) 和流匹配进行渐进式语义解码,CosyVoice 在语音语境学习中实现了较高的韵律自然度、内容一致性和说话人相似性。
1709 1
CosyVoice再升级,可扩展流式语音合成
|
人工智能 搜索推荐 语音技术
有道开源的国产语音库EmotiVoice爆火了!具有情绪控制功能的语音合成引擎!
有道开源的国产语音库EmotiVoice爆火了!具有情绪控制功能的语音合成引擎!
2289 0
|
监控 语音技术 异构计算
使用开源的模型(像speech_sambert-hifigan_tts_zhida_zh-cn_16k)进行语音合成任务的推理时,推理速度太慢了,500字大约需要1分钟,为什么会这么慢
使用开源的模型(像speech_sambert-hifigan_tts_zhida_zh-cn_16k)进行语音合成任务的推理时,推理速度太慢了,500字大约需要1分钟,为什么会这么慢
791 2
|
人工智能 达摩院 Linux
如何使用ModelScope魔搭开源代码训练一款语音合成模型
如何使用ModelScope魔搭开源代码训练一款语音合成模型
1441 0
|
机器学习/深度学习 人工智能 前端开发
【技术揭秘】阿里语音AI : KAN-TTS语音合成技术
近几年,End2end技术发展迅速,在各个领域都有广泛的研究。在语音合成领域,研究人员也提出了基于End2end技术的语音合成系统。在End2end语音合成系统中,只需要文本和对应的wav数据,任何人都可以利用强大的深度学习技术得到还不错的合成语音。
【技术揭秘】阿里语音AI : KAN-TTS语音合成技术
|
1月前
|
文字识别 算法 语音技术
基于模型蒸馏的大模型文案生成最佳实践
本文介绍了基于模型蒸馏技术优化大语言模型在文案生成中的应用。针对大模型资源消耗高、部署困难的问题,采用EasyDistill算法框架与PAI产品,通过SFT和DPO算法将知识从大型教师模型迁移至轻量级学生模型,在保证生成质量的同时显著降低计算成本。内容涵盖教师模型部署、训练数据构建及学生模型蒸馏优化全过程,助力企业在资源受限场景下实现高效文案生成,提升用户体验与业务增长。
328 23
|
1月前
|
人工智能 JavaScript 测试技术
Cradle:颠覆AI Agent 操作本地软件,AI驱动的通用计算机控制框架,如何让基础模型像人一样操作你的电脑?
Cradle 是由 BAAI‑Agents 团队开源的通用计算机控制(GCC)多模态 AI Agent 框架,具备视觉输入、键鼠操作输出、自主学习与反思能力,可操作各类本地软件及游戏,实现任务自动化与复杂逻辑执行。
174 6
|
2月前
|
人工智能 弹性计算 API
再不玩通义 VACE 模型你就过时了!一个模型搞定所有视频任务
介绍通义的开源模型在 ecs 或 acs 场景如何一键部署和使用,如何解决不同视频生成场景的问题。

热门文章

最新文章