CosyVoice 2.0:阿里开源升级版语音生成大模型,支持多语言和跨语言语音合成,提升发音和音色等的准确性

简介: CosyVoice 2.0 是阿里巴巴通义实验室推出的语音生成大模型升级版,通过有限标量量化技术和块感知因果流匹配模型,显著提升了发音准确性、音色一致性和音质,支持多语言和流式推理,适合实时语音合成场景。

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


🚀 快速阅读

  1. 功能:支持超低延迟的流式语音合成,首包合成延迟仅150ms。
  2. 性能:发音准确性显著提升,音色一致性和韵律自然度大幅改善。
  3. 技术:采用全尺度量化和离线流式一体化建模,支持多语言和指令可控的音频生成。

正文(附运行示例)

CosyVoice 2.0 是什么

公众号: 蚝油菜花 - CosyVoice

CosyVoice 2.0 是阿里巴巴通义实验室推出的语音生成大模型升级版,旨在通过有限标量量化技术和块感知因果流匹配模型,提升语音合成的质量。该模型简化了文本-语音语言模型架构,支持多样的合成场景,并在发音准确性、音色一致性、韵律和音质上都有显著提升。

相比前版本,CosyVoice 2.0 的MOS评测分从5.4提升到5.53,支持流式推理,大幅降低首包合成延迟至150ms,适合实时语音合成场景。此外,它还支持多语言和跨语言语音合成,能够满足不同应用场景的需求。

CosyVoice 2.0 的主要功能

  • 超低延迟的流式语音合成:支持双向流式语音合成,首包合成延迟可达150ms,适合实时应用场景。
  • 高准确度的发音:相比前版本,发音错误率显著下降,尤其在处理绕口令、多音字、生僻字上表现突出。
  • 音色一致性:在零样本和跨语言语音合成中保持音色高度一致性,提升合成自然度。
  • 自然体验:合成音频的韵律、音质、情感匹配得到提升,MOS评测分提高,接近商业化语音合成大模型。
  • 多语言支持:在大规模多语言数据集上训练,实现跨语言的语音合成能力。

CosyVoice 2.0 的技术原理

  • LLM backbone:基于预训练的文本基座大模型(如Qwen2.5-0.5B),替换原有的Text Encoder + random Transformer结构,进行文本的语义建模。
  • FSQ Speech Tokenizer:用全尺度量化(FSQ)替换向量量化(VQ),训练更大的码本(6561),实现100%激活,提升发音准确性。
  • 离线和流式一体化建模方案:提出一体化建模方案,让LLM和FM均支持流式推理,实现快速合成首包音频。
  • 指令可控的音频生成能力升级:优化基模型和指令模型的整合,支持情感、说话风格和细粒度控制指令,新增中文指令处理能力。
  • 多模态大模型技术:基于多模态大模型技术,实现语音识别、语音合成、自然语言理解等AI技术,提供“能听、会说、懂你”式的智能人机交互体验。

如何运行 CosyVoice 2.0

环境配置

  1. 克隆仓库并安装依赖:

    git clone --recursive https://github.com/FunAudioLLM/CosyVoice.git
    cd CosyVoice
    git submodule update --init --recursive
    
  2. 创建 Conda 环境并安装依赖:

    conda create -n cosyvoice python=3.10
    conda activate cosyvoice
    conda install -y -c conda-forge pynini==2.1.5
    pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/ --trusted-host=mirrors.aliyun.com
    

模型下载

from modelscope import snapshot_download
snapshot_download('iic/CosyVoice2-0.5B', local_dir='pretrained_models/CosyVoice2-0.5B')
snapshot_download('iic/CosyVoice-300M', local_dir='pretrained_models/CosyVoice-300M')

基本使用

from cosyvoice.cli.cosyvoice import CosyVoice2
cosyvoice = CosyVoice2('pretrained_models/CosyVoice2-0.5B', load_jit=True, load_onnx=False, load_trt=False)

# 零样本推理
prompt_speech_16k = load_wav('zero_shot_prompt.wav', 16000)
for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', prompt_speech_16k, stream=False)):
    torchaudio.save('zero_shot_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate)

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

相关实践学习
达摩院智能语音交互 - 声纹识别技术
声纹识别是基于每个发音人的发音器官构造不同,识别当前发音人的身份。按照任务具体分为两种: 声纹辨认:从说话人集合中判别出测试语音所属的说话人,为多选一的问题 声纹确认:判断测试语音是否由目标说话人所说,是二选一的问题(是或者不是) 按照应用具体分为两种: 文本相关:要求使用者重复指定的话语,通常包含与训练信息相同的文本(精度较高,适合当前应用模式) 文本无关:对使用者发音内容和语言没有要求,受信道环境影响比较大,精度不高 本课程主要介绍声纹识别的原型技术、系统架构及应用案例等。 讲师介绍: 郑斯奇,达摩院算法专家,毕业于美国哈佛大学,研究方向包括声纹识别、性别、年龄、语种识别等。致力于推动端侧声纹与个性化技术的研究和大规模应用。
相关文章
|
5月前
|
分布式计算 测试技术 Spark
科大讯飞开源星火化学大模型、文生音效模型
近期,科大讯飞在魔搭社区(ModelScope)和Gitcode上开源两款模型:讯飞星火化学大模型Spark Chemistry-X1-13B、讯飞文生音频模型AudioFly,助力前沿化学技术研究,以及声音生成技术和应用的探索。
464 2
|
6月前
|
人工智能 算法 开发者
开源VLM“华山论剑”丨AI Insight Talk多模态专场直播预告
开源VLM“华山论剑”丨AI Insight Talk多模态专场直播预告
566 10
开源VLM“华山论剑”丨AI Insight Talk多模态专场直播预告
|
5月前
|
机器学习/深度学习 数据采集 人工智能
通义实验室Mobile-Agent-v3开源,全平台SOTA的GUI智能体,支持手机电脑等多平台交互
近日,通义实验室MobileAgent团队正式开源全新图形界面交互基础模型 GUI-Owl,并同步推出支持多智能体协同的自动化框架 Mobile-Agent-v3。该模型基于Qwen2.5-VL打造,在手机端与电脑端共8个GUI任务榜单中全面刷新开源模型性能纪录,达成全平台SOTA。
1633 2
|
6月前
|
数据采集 机器学习/深度学习 编解码
小红书 hi lab开源最强多模态大模型dots.vlm1,性能对标闭源 Gemini 2.5 Pro 和 Seed-VL1.5
小红书 hi lab开源最强多模态大模型dots.vlm1,性能对标闭源 Gemini 2.5 Pro 和 Seed-VL1.5
694 0
小红书 hi lab开源最强多模态大模型dots.vlm1,性能对标闭源 Gemini 2.5 Pro 和 Seed-VL1.5
|
5月前
|
人工智能 Java 开发者
阿里出手!Java 开发者狂喜!开源 AI Agent 框架 JManus 来了,初次见面就心动~
JManus是阿里开源的Java版OpenManus,基于Spring AI Alibaba框架,助力Java开发者便捷应用AI技术。支持多Agent框架、网页配置、MCP协议及PLAN-ACT模式,可集成多模型,适配阿里云百炼平台与本地ollama。提供Docker与源码部署方式,具备无限上下文处理能力,适用于复杂AI场景。当前仍在完善模型配置等功能,欢迎参与开源共建。
2261 58
阿里出手!Java 开发者狂喜!开源 AI Agent 框架 JManus 来了,初次见面就心动~
|
6月前
智谱发布GLM-4.5V,全球开源多模态推理新标杆,Day0推理微调实战教程到!
视觉语言大模型(VLM)已经成为智能系统的关键基石。随着真实世界的智能任务越来越复杂,VLM模型也亟需在基本的多模态感知之外,逐渐增强复杂任务中的推理能力,提升自身的准确性、全面性和智能化程度,使得复杂问题解决、长上下文理解、多模态智能体等智能任务成为可能。
920 0
|
6月前
|
编解码 算法 测试技术
MiniCPM-V4.0开源,多模态能力进化,手机可用,还有最全CookBook!
今天,面壁小钢炮新一代多模态模型 MiniCPM-V 4.0 正式开源。依靠 4B 参数,取得 在 OpenCompass、OCRBench、MathVista 等多个榜单上取得了同级 SOTA 成绩,且 实现了在手机上稳定、丝滑运行。此外,官方也正式开源了 推理部署工具 MiniCPM-V CookBook,帮助开发者面向不同需求、不同场景、不同设备,均可实现开箱即用的轻量、简易部署。
903 0
|
6月前
|
人工智能 算法 测试技术
轻量高效,8B 性能强劲书生科学多模态模型Intern-S1-mini开源
继 7 月 26 日开源『书生』科学多模态大模型 Intern-S1 之后,上海人工智能实验室(上海AI实验室)在8月23日推出了轻量化版本 Intern-S1-mini。
854 50

热门文章

最新文章