leecode 移动零

简介: 给定数组`nums`,编写函数将所有0移动至数组末尾,同时保持非零元素的相对顺序。要求在不复制数组的情况下原地操作。示例:输入`[0,1,0,3,12]`,输出`[1,3,12,0,0]`。代码实现使用双循环遍历数组,找到0并交换位置。

给定一个数组 nums,编写一个函数将所有 0 移动到数组的末尾,同时保持非零元素的相对顺序。

请注意 ,必须在不复制数组的情况下原地对数组进行操作。

示例 1:

输入: nums = [0,1,0,3,12]
输出: [1,3,12,0,0]
示例 2:

输入: nums = [0]
输出: [0]

提示:

1 <= nums.length <= 104
-231 <= nums[i] <= 231 - 1

class Solution {
    public void moveZeroes(int[] nums) {
        for(int i=0;i<nums.length-1;i++)
         if(nums[i]==0)
         {
            for(int j=i+1;j<nums.length;j++)
            {
                if(nums[j]!=0)
                {
                    nums[i]=nums[j];
                    nums[j]=0;
                    break;
                }
            }
         }
    }
}
相关文章
|
11月前
|
人工智能 自然语言处理 前端开发
100个降噪蓝牙耳机免费领,用通义灵码从 0 开始打造一个完整APP
打开手机,录制下你完成的代码效果,发布到你的社交媒体,前 100 个@玺哥超Carry、@通义灵码的粉丝,可以免费获得一个降噪蓝牙耳机。
6612 16
|
10月前
|
人工智能 弹性计算 运维
ACK Edge与IDC:高效容器网络通信新突破
本文介绍如何基于ACK Edge以及高效的容器网络插件管理IDC进行容器化。
|
10月前
|
消息中间件 人工智能 运维
12月更文特别场——寻找用云高手,分享云&AI实践
我们寻找你,用云高手,欢迎分享你的真知灼见!
3914 101
|
10月前
|
Ubuntu Shell Linux
pyenv 管理多个 Python 版本(1)
pyenv 管理多个 Python 版本(1)
416 86
pyenv 管理多个 Python 版本(1)
|
10月前
|
监控 安全 API
使用PaliGemma2构建多模态目标检测系统:从架构设计到性能优化的技术实践指南
本文详细介绍了PaliGemma2模型的微调流程及其在目标检测任务中的应用。PaliGemma2通过整合SigLIP-So400m视觉编码器与Gemma 2系列语言模型,实现了多模态数据的高效处理。文章涵盖了开发环境构建、数据集预处理、模型初始化与配置、数据加载系统实现、模型微调、推理与评估系统以及性能分析与优化策略等内容。特别强调了计算资源优化、训练过程监控和自动化优化流程的重要性,为机器学习工程师和研究人员提供了系统化的技术方案。
687 77
使用PaliGemma2构建多模态目标检测系统:从架构设计到性能优化的技术实践指南
|
10月前
|
存储 人工智能 vr&ar
转载:【AI系统】CPU 基础
CPU,即中央处理器,是计算机的核心部件,负责执行指令和控制所有组件。本文从CPU的发展史入手,介绍了从ENIAC到现代CPU的演变,重点讲述了冯·诺依曼架构的形成及其对CPU设计的影响。文章还详细解析了CPU的基本构成,包括算术逻辑单元(ALU)、存储单元(MU)和控制单元(CU),以及它们如何协同工作完成指令的取指、解码、执行和写回过程。此外,文章探讨了CPU的局限性及并行处理架构的引入。
转载:【AI系统】CPU 基础
|
10月前
|
机器学习/深度学习 人工智能 自然语言处理
MMAudio:开源 AI 音频合成项目,根据视频或文本生成同步的音频
MMAudio 是一个基于多模态联合训练的高质量 AI 音频合成项目,能够根据视频内容或文本描述生成同步的音频。该项目适用于影视制作、游戏开发、虚拟现实等多种场景,提升用户体验。
538 8
MMAudio:开源 AI 音频合成项目,根据视频或文本生成同步的音频
|
10月前
|
人工智能 缓存 并行计算
转载:【AI系统】CPU 计算本质
本文深入探讨了CPU计算性能,分析了算力敏感度及技术趋势对CPU性能的影响。文章通过具体数据和实例,讲解了CPU算力的计算方法、算力与数据加载之间的平衡,以及如何通过算力敏感度分析优化计算系统性能。同时,文章还考察了服务器、GPU和超级计算机等平台的性能发展,揭示了这些变化如何塑造我们对CPU性能的理解和期待。
转载:【AI系统】CPU 计算本质
|
10月前
|
机器学习/深度学习 数据采集 人工智能
基于可图Kolors的皮影戏风格LoRA训练&创作
可图Kolors-LoRA风格故事挑战赛比赛过程心得分享
341 8
基于可图Kolors的皮影戏风格LoRA训练&创作
|
10月前
|
机器学习/深度学习 存储 人工智能
转载:【AI系统】计算之比特位宽
本文详细介绍了深度学习中模型量化操作及其重要性,重点探讨了比特位宽的概念,包括整数和浮点数的表示方法。文章还分析了不同数据类型(如FP32、FP16、BF16、FP8等)在AI模型中的应用,特别是FP8数据类型在提升计算性能和降低内存占用方面的优势。最后,文章讨论了降低比特位宽对AI芯片性能的影响,强调了在不同应用场景中选择合适数据类型的重要性。
转载:【AI系统】计算之比特位宽