R中单细胞RNA-seq分析教程 (5)

简介: R中单细胞RNA-seq分析教程 (5)

引言

本系列开启R中单细胞RNA-seq数据分析教程,持续更新,欢迎关注,转发!

10. 伪时间细胞排序

如前所述,在 UMAP 嵌入中看到的背侧端脑细胞形成的类似轨迹的结构,很可能代表了背侧端脑兴奋性神经元的分化和成熟过程。这个过程很可能是连续的,因此将其视为一个连续的轨迹,而非不同的聚类,更为合适。在这种情况下,进行所谓的伪时间细胞排序或伪时间分析会更加具有信息价值。

目前,有许多不同的伪时间分析方法。常见的包括扩散图(在 R 的 destiny 包中实现)和 monocle。在这里,将展示如何使用 destiny 对数据中的背侧端脑细胞进行伪时间分析。

首先,提取感兴趣的细胞。接下来,会重新识别这些细胞的高变基因,因为在这些细胞之间,代表背侧端脑细胞与其他细胞的差异的基因不再是有用的。

seurat_dorsal <- subset(seurat, subset = RNA_snn_res.1 %in% c(0,2,5,6,10))
seurat_dorsal <- FindVariableFeatures(seurat_dorsal, nfeatures = 2000)

正如你可能已经注意到的,背侧端脑神经前体细胞(NPC)中有两个聚类与第三个聚类分开,原因是它们处于不同的细胞周期阶段。由于关注的是分化和成熟过程中的整体分子变化,细胞周期的变化可能会对分析产生较大的干扰。因此,可以尝试通过排除与细胞周期相关的基因,来减少细胞周期对分析结果的影响。

VariableFeatures(seurat) <- setdiff(VariableFeatures(seurat), unlist(cc.genes))

接下来,可以创建一个新的 UMAP 嵌入,并绘制一些特征图来检查数据的表现。

seurat_dorsal <- RunPCA(seurat_dorsal) %>% RunUMAP(dims = 1:20)
FeaturePlot(seurat_dorsal, c("MKI67","GLI3","EOMES","NEUROD6"), ncol = 4)

结果不是很理想。G2M 细胞不再集中在单独的聚类中,但它仍然干扰了细胞类型分化的轨迹。例如,EOMES+ 细胞被分布在两个不同的群体中。需要进一步减少细胞周期的影响。

如上所述,ScaleData 函数提供了一个选项,可以将表示不必要变异来源的变量纳入其中。可以尝试利用这个选项,进一步减少细胞周期的影响;不过在这之前,需要为每个细胞生成细胞周期相关的评分,以描述它们的细胞周期状态。

seurat_dorsal <- CellCycleScoring(seurat_dorsal,
                                  s.features = cc.genes$s.genes,
                                  g2m.features = cc.genes$g2m.genes,
                                  set.ident = TRUE)
seurat_dorsal <- ScaleData(seurat_dorsal, vars.to.regress = c("S.Score", "G2M.Score"))

接下来,可以创建一个新的 UMAP 嵌入,并绘制一些特征图来检查数据的表现。

seurat_dorsal <- RunPCA(seurat_dorsal) %>% RunUMAP(dims = 1:20)
FeaturePlot(seurat_dorsal, c("MKI67","GLI3","EOMES","NEUROD6"), ncol = 4)

虽然结果不是完全理想,但至少不再看到两个分开的 EOMES+ 细胞群体。

接下来,让尝试运行扩散图,以便对细胞进行排序。

library(destiny)
dm <- DiffusionMap(Embeddings(seurat_dorsal, "pca")[,1:20])
dpt <- DPT(dm)
seurat_dorsal$dpt <- rank(dpt$dpt)
FeaturePlot(seurat_dorsal, c("dpt","GLI3","EOMES","NEUROD6"), ncol=4)

为了展示沿着构建的伪时间的表达变化,带有拟合曲线的散点图通常是一种直观的方法。

if (is(seurat_dorsal[['RNA']], 'Assay5')){
    expr <- LayerData(seurat_dorsal, assay = "RNA", layer = "data")
} else{
    expr <- seurat_dorsal[['RNA']]@data
}

library(ggplot2)
plot1 <- qplot(seurat_dorsal$dpt, as.numeric(expr["GLI3",]),
               xlab="Dpt", ylab="Expression", main="GLI3") +
         geom_smooth(se = FALSE, method = "loess") + theme_bw()
plot2 <- qplot(seurat_dorsal$dpt, as.numeric(expr["EOMES",]),
               xlab="Dpt", ylab="Expression", main="EOMES") +
         geom_smooth(se = FALSE, method = "loess") + theme_bw()
plot3 <- qplot(seurat_dorsal$dpt, as.numeric(expr["NEUROD6",]),
               xlab="Dpt", ylab="Expression", main="NEUROD6") +
         geom_smooth(se = FALSE, method = "loess") + theme_bw()
plot1 + plot2 + plot3

11. 结果保存

这就是本教程第一部分的全部内容,涵盖了对单个 scRNA-seq 数据集进行的大部分基础分析。在分析结束时,当然希望保存结果,可能是操作过一段时间的 Seurat 对象,这样下次就不需要重新运行所有分析了。保存 Seurat 对象的方法与保存其他 R 对象一样。可以使用 saveRDS/readRDS 来分别保存和加载 Seurat 对象。

saveRDS(seurat, file="DS1/seurat_obj_all.rds")
saveRDS(seurat_dorsal, file="DS1/seurat_obj_dorsal.rds")

seurat <- readRDS("DS1/seurat_obj_all.rds")
seurat_dorsal <- readRDS("DS1/seurat_obj_dorsal.rds")

或者可以使用 save/load 来一起保存或加载多个对象。

save(seurat, seurat_dorsal, file="DS1/seurat_objs.rdata")
load("DS1/seurat_objs.rdata")
相关文章
|
14天前
|
人工智能 自动驾驶 大数据
预告 | 阿里云邀您参加2024中国生成式AI大会上海站,马上报名
大会以“智能跃进 创造无限”为主题,设置主会场峰会、分会场研讨会及展览区,聚焦大模型、AI Infra等热点议题。阿里云智算集群产品解决方案负责人丛培岩将出席并发表《高性能智算集群设计思考与实践》主题演讲。观众报名现已开放。
|
6天前
|
自然语言处理 数据可视化 API
Qwen系列模型+GraphRAG/LightRAG/Kotaemon从0开始构建中医方剂大模型知识图谱问答
本文详细记录了作者在短时间内尝试构建中医药知识图谱的过程,涵盖了GraphRAG、LightRAG和Kotaemon三种图RAG架构的对比与应用。通过实际操作,作者不仅展示了如何利用这些工具构建知识图谱,还指出了每种工具的优势和局限性。尽管初步构建的知识图谱在数据处理、实体识别和关系抽取等方面存在不足,但为后续的优化和改进提供了宝贵的经验和方向。此外,文章强调了知识图谱构建不仅仅是技术问题,还需要深入整合领域知识和满足用户需求,体现了跨学科合作的重要性。
|
1月前
|
存储 人工智能 弹性计算
阿里云弹性计算_加速计算专场精华概览 | 2024云栖大会回顾
2024年9月19-21日,2024云栖大会在杭州云栖小镇举行,阿里云智能集团资深技术专家、异构计算产品技术负责人王超等多位产品、技术专家,共同带来了题为《AI Infra的前沿技术与应用实践》的专场session。本次专场重点介绍了阿里云AI Infra 产品架构与技术能力,及用户如何使用阿里云灵骏产品进行AI大模型开发、训练和应用。围绕当下大模型训练和推理的技术难点,专家们分享了如何在阿里云上实现稳定、高效、经济的大模型训练,并通过多个客户案例展示了云上大模型训练的显著优势。
|
1月前
|
存储 人工智能 调度
阿里云吴结生:高性能计算持续创新,响应数据+AI时代的多元化负载需求
在数字化转型的大潮中,每家公司都在积极探索如何利用数据驱动业务增长,而AI技术的快速发展更是加速了这一进程。
|
2天前
|
人工智能 容器
三句话开发一个刮刮乐小游戏!暖ta一整个冬天!
本文介绍了如何利用千问开发一款情侣刮刮乐小游戏,通过三步简单指令实现从单个功能到整体框架,再到多端优化的过程,旨在为生活增添乐趣,促进情感交流。在线体验地址已提供,鼓励读者动手尝试,探索编程与AI结合的无限可能。
|
6天前
|
Cloud Native Apache 流计算
PPT合集|Flink Forward Asia 2024 上海站
Apache Flink 年度技术盛会聚焦“回顾过去,展望未来”,涵盖流式湖仓、流批一体、Data+AI 等八大核心议题,近百家厂商参与,深入探讨前沿技术发展。小松鼠为大家整理了 FFA 2024 演讲 PPT ,可在线阅读和下载。
3130 10
PPT合集|Flink Forward Asia 2024 上海站
|
2天前
|
人工智能 自然语言处理 前端开发
从0开始打造一款APP:前端+搭建本机服务,定制暖冬卫衣先到先得
通义灵码携手科技博主@玺哥超carry 打造全网第一个完整的、面向普通人的自然语言编程教程。完全使用 AI,再配合简单易懂的方法,只要你会打字,就能真正做出一个完整的应用。
931 12
|
19天前
|
人工智能 自然语言处理 前端开发
100个降噪蓝牙耳机免费领,用通义灵码从 0 开始打造一个完整APP
打开手机,录制下你完成的代码效果,发布到你的社交媒体,前 100 个@玺哥超Carry、@通义灵码的粉丝,可以免费获得一个降噪蓝牙耳机。
5874 16
|
1月前
|
缓存 监控 Linux
Python 实时获取Linux服务器信息
Python 实时获取Linux服务器信息
|
12天前
|
机器学习/深度学习 人工智能 安全
通义千问开源的QwQ模型,一个会思考的AI,百炼邀您第一时间体验
Qwen团队推出新成员QwQ-32B-Preview,专注于增强AI推理能力。通过深入探索和试验,该模型在数学和编程领域展现了卓越的理解力,但仍在学习和完善中。目前,QwQ-32B-Preview已上线阿里云百炼平台,提供免费体验。