【AI系统】计算图基本介绍

简介: 近年来,AI框架如TensorFlow和PyTorch通过计算图描述神经网络,推动了AI技术的发展。计算图不仅抽象了神经网络的计算表达,还支持了模型算子的高效执行、梯度计算及参数训练。随着模型复杂度增加,如MOE、GAN、Attention Transformer等,AI框架需具备快速分析模型结构的能力,以优化训练效率。计算图与自动微分紧密结合,实现了从前向计算到反向传播的全流程自动化。

在 AI 框架发展的最近一个阶段,技术上主要以计算图来描述神经网络。前期实践最终催生出了工业级 AI:TensorFlow 和 PyTorch,这一时期同时伴随着如 Chainer、DyNet、CNTK、PaddlePaddle、JAX 等激发了框架设计灵感的诸多实验课程。

TensorFlow 和 PyTorch,特别是 PyTorch 代表了今天 AI 框架两种不同的设计路径:系统性能优先改善灵活性和灵活性易用性优先改善系统性能。这两种选择,随着神经网络算法研究和应用的更进一步发展,使得 AI 框架在技术实现方案的巨大差异。

随着神经网络模型越来越复杂,包括混合专家模型 MOE、生成对抗网络 GAN、注意力模型 Attention Transformer 等。复杂的模型结构需要 AI 框架能够对模型算子的执行依赖关系、梯度计算以及训练参数进行快速高效的分析,便于优化模型结构、制定调度执行策略以及实现自动化梯度计算,从而提高 AI 框架训练的效率。

综上所述,目前主流的 AI 框架都选择使用计算图来抽象神经网络计算表达,通过通用的数据结构(张量)来理解、表达和执行神经网络模型,通过计算图可以把 AI 系统化的问题形象地表示出来。

image

有了对计算图的基本了解之后,就开始深入地了解计算图,跟自动微分之间的关系。即计算图、神经网络在真正执行计算,反向传播如何传播,如何表达自动微分的概念,而不是停留在抽象的数学含义。

神经网络的训练流程主要包括一下五个过程:1)前向计算、2)计算损失、3)自动求导、4)反向传播、5)更新模型参数。在基于计算图的 AI 框架中,这五个阶段统一表示为由基本算子构成的计算图,算子是数据流图中的一个节点,由后端进行高效实现。

但是在程序实现过程中,会遇到很多编程性问题,例如控制流(if、else、while、for 等)跟程序相关,而非跟计算和数学表示相关的内容。因此会展开计算图和控制流之间的关系,也深入地去探讨计算关于调度和具体的执行方式,从而更好地、灵活地表达计算图。

如果您想了解更多AI知识,与AI专业人士交流,请立即访问昇腾社区官方网站https://www.hiascend.com/或者深入研读《AI系统:原理与架构》一书,这里汇聚了海量的AI学习资源和实践课程,为您的AI技术成长提供强劲动力。不仅如此,您还有机会投身于全国昇腾AI创新大赛和昇腾AI开发者创享日等盛事,发现AI世界的无限奥秘~

目录
相关文章
|
5天前
|
机器学习/深度学习 人工智能 自然语言处理
转载:【AI系统】AI的领域、场景与行业应用
本文概述了AI的历史、现状及发展趋势,探讨了AI在计算机视觉、自然语言处理、语音识别等领域的应用,以及在金融、医疗、教育、互联网等行业中的实践案例。随着技术进步,AI模型正从单一走向多样化,从小规模到大规模分布式训练,企业级AI系统设计面临更多挑战,同时也带来了新的研究与工程实践机遇。文中强调了AI基础设施的重要性,并鼓励读者深入了解AI系统的设计原则与研究方法,共同推动AI技术的发展。
转载:【AI系统】AI的领域、场景与行业应用
|
4天前
|
存储 人工智能 vr&ar
转载:【AI系统】CPU 基础
CPU,即中央处理器,是计算机的核心部件,负责执行指令和控制所有组件。本文从CPU的发展史入手,介绍了从ENIAC到现代CPU的演变,重点讲述了冯·诺依曼架构的形成及其对CPU设计的影响。文章还详细解析了CPU的基本构成,包括算术逻辑单元(ALU)、存储单元(MU)和控制单元(CU),以及它们如何协同工作完成指令的取指、解码、执行和写回过程。此外,文章探讨了CPU的局限性及并行处理架构的引入。
转载:【AI系统】CPU 基础
|
4天前
|
人工智能 缓存 并行计算
转载:【AI系统】CPU 计算本质
本文深入探讨了CPU计算性能,分析了算力敏感度及技术趋势对CPU性能的影响。文章通过具体数据和实例,讲解了CPU算力的计算方法、算力与数据加载之间的平衡,以及如何通过算力敏感度分析优化计算系统性能。同时,文章还考察了服务器、GPU和超级计算机等平台的性能发展,揭示了这些变化如何塑造我们对CPU性能的理解和期待。
转载:【AI系统】CPU 计算本质
|
4天前
|
机器学习/深度学习 存储 人工智能
转载:【AI系统】计算之比特位宽
本文详细介绍了深度学习中模型量化操作及其重要性,重点探讨了比特位宽的概念,包括整数和浮点数的表示方法。文章还分析了不同数据类型(如FP32、FP16、BF16、FP8等)在AI模型中的应用,特别是FP8数据类型在提升计算性能和降低内存占用方面的优势。最后,文章讨论了降低比特位宽对AI芯片性能的影响,强调了在不同应用场景中选择合适数据类型的重要性。
转载:【AI系统】计算之比特位宽
|
4天前
|
机器学习/深度学习 人工智能 算法
转载:【AI系统】关键设计指标
本文介绍了AI芯片的关键设计指标及其与AI计算模式的关系,涵盖计算单位(如OPS、MACs、FLOPs)、关键性能指标(精度、吞吐量、时延、能耗、成本、易用性)及优化策略,通过算术强度和Roofline模型评估AI模型在芯片上的执行性能,旨在帮助理解AI芯片设计的核心考量与性能优化方法。
转载:【AI系统】关键设计指标
|
4天前
|
机器学习/深度学习 人工智能 并行计算
转载:【AI系统】AI轻量化与并行策略
本文探讨了AI计算模式对AI芯片设计的重要性,重点分析了轻量化网络模型和大模型分布式并行两大主题。轻量化网络模型通过减少模型参数量和计算量,实现在资源受限设备上的高效部署;大模型分布式并行则通过数据并行和模型并行技术,解决大模型训练中的算力和内存瓶颈,推动AI技术的进一步发展。
转载:【AI系统】AI轻量化与并行策略
|
1天前
|
人工智能 安全 算法
CAMEL AI 上海黑客松重磅来袭!快来尝试搭建你的第一个多智能体系统吧!
掌握多智能体系统,🐫 CAMEL-AI Workshop & 黑客马拉松即将启航!
|
4天前
|
机器学习/深度学习 人工智能 算法
转载:【AI系统】AI 发展驱动力
本文介绍了AI的起源与发展历程,强调了2016年AlphaGo胜利对AI关注度的提升。文中详细解析了AI技术在搜索引擎、图片检索、广告推荐等领域的应用,并阐述了机器学习、深度学习和神经网络之间的关系。文章还深入探讨了AI的学习方法,包括模型的输入输出确定、模型设计与开发、训练过程(前向传播、反向传播、梯度更新)及推理过程。最后,文章概述了AI算法的现状与发展趋势,以及AI系统出现的背景,包括大数据、算法进步和算力提升三大关键因素。
转载:【AI系统】AI 发展驱动力
|
4天前
|
机器学习/深度学习 人工智能 算法
转载:【AI系统】AI系统概述与设计目标
本文介绍了AI系统全栈架构,涵盖AI系统的设计目标、组成和生态,强调了系统性能、用户体验、稳定性及开源社区运营的重要性。文章详细解析了AI系统的基本概念、定义及其设计挑战,旨在为读者构建AI系统知识体系,助力AI技术的全面发展。通过对比传统软件和云计算架构,阐述了AI系统在连接硬件与应用间的独特作用,探讨了高效编程语言、开发框架和工具链的设计,以及AI任务的系统级支持,包括计算能力的扩展、自动编译优化、云原生自动分布式化等方面,为应对AI技术的新挑战提供了全面视角。
|
6天前
|
人工智能 缓存 异构计算
云原生AI加速生成式人工智能应用的部署构建
本文探讨了云原生技术背景下,尤其是Kubernetes和容器技术的发展,对模型推理服务带来的挑战与优化策略。文中详细介绍了Knative的弹性扩展机制,包括HPA和CronHPA,以及针对传统弹性扩展“滞后”问题提出的AHPA(高级弹性预测)。此外,文章重点介绍了Fluid项目,它通过分布式缓存优化了模型加载的I/O操作,显著缩短了推理服务的冷启动时间,特别是在处理大规模并发请求时表现出色。通过实际案例,展示了Fluid在vLLM和Qwen模型推理中的应用效果,证明了其在提高模型推理效率和响应速度方面的优势。
云原生AI加速生成式人工智能应用的部署构建