基于simulink的模拟锁相环和数字锁相环建模与对比仿真

简介: 本研究利用Simulink对模拟锁相环(PLL)和数字锁相环(DPLL)进行建模,通过对比两者的收敛曲线及锁定频率值,分析其性能差异。系统采用MATLAB2022a版本,详细介绍了PLL和DPLL的工作原理,涵盖鉴相器、滤波器及振荡器等关键组件的功能与数学描述。

1.课题概述
模拟锁相环和数字锁相环建模的simulink建模,对比收敛曲线,对比锁定频率值。

2.系统仿真结果

1.jpeg
2.jpeg

3.核心程序与模型
版本:MATLAB2022a

3.jpeg
4.jpeg

4.系统原理简介
4.1 模拟锁相环(PLL)的基本原理
模拟锁相环主要由以下几个部分组成:鉴相器(Phase Detector)、低通滤波器(LPF)、压控振荡器(Voltage Controlled Oscillator, VCO)和分频器(有时还有倍频器)。

   鉴相器(PD): 当输入信号f_in(t)与VCO输出信号f_vco(t)的相位差为Δθ时,鉴相器会产生一个误差电压e(t),通常表达为:

adcee41b10d25b38a90fdd695633e449_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

其中,K_p是鉴相增益。

    低通滤波器(LPF): LPF主要用于滤除高频噪声和瞬态误差,提取出平均相位偏差,经过滤波后的电压V_c(t)可表示为:

23bcd728d7df9edab91fdffe54c66af2_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

其中,h(t)是LPF的脉冲响应函数。

   压控振荡器(VCO): VCO的频率f_vco与控制电压V_c成正比关系,一般形式为:

436adbfd4541d5478739b0ccfb240b37_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

其中,K_v是VCO的频率灵敏度。

锁相环最终的目标是使f_vco锁定在f_in的某个整数倍上,即达到相位锁定状态。

4.2 数字锁相环(DPLL)的基本原理
数字锁相环与模拟PLL类似,但工作在离散时间域,通常包括数字鉴相器、数字滤波器和数字控制的DDS(Direct Digital Synthesizer)或NCO(Numerically Controlled Oscillator)。

   数字鉴相器(DPD): 数字鉴相器基于采样数据计算输入信号与本地信号的相位差,误差信号e[k]可以写作:

aef484dc7d37ccf4765dff4c10df6719_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

其中,K_d是数字鉴相增益,k是采样时刻索引。

    数字滤波器(DF): DF在数字域中执行低通滤波操作,更新控制量C[k],例如使用IIR滤波器或FIR滤波器的递推公式:

d86f65b23296d393c9868c53252262a5_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

或更复杂的滤波算法,其中α是滤波系数。

   数字频率合成器(DDS或NCO): DDS或NCO根据控制量C[k]生成频率可控的数字正弦波,其输出频率与C[k]的关系为:

c75971eeb3d53987028c3837ee345739_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

其中,F_s是采样率,N是DDS的频率分辨率位数。

相关文章
|
18天前
|
传感器
基于SVPWM矢量控制的无速度传感器电机控制系统simulink建模与仿真
本课题基于SVPWM矢量控制,构建无速度传感器电机控制系统Simulink模型,涵盖电机、SVPWM模块及矢量控制器。通过电流闭环反馈实现精确磁场定向和转矩控制,利用SVPWM生成高精度调制波形,适用于永磁同步电机(PMSM)。系统无需物理速度传感器,通过电压和电流反馈估计电机速度,广泛应用于电动车驱动、工业自动化等领域。模型版本:MATLAB2022a。
|
9天前
|
数据安全/隐私保护
基于电压电流双闭环控制的三相整流器系统simulink建模与仿真
本课题基于电压电流双闭环控制,对三相整流器系统进行Simulink建模与仿真。系统采用MATLAB2022a版本,通过外环电压和内环电流控制,实现直流侧电压和交流侧电流的精确调节,提高动态响应速度和稳态精度。仿真结果无水印,展示了良好的功率因数和谐波性能。核心模型包括PI控制器用于电流调节,确保电流误差为零,同时引入谐波抑制策略以优化系统性能。
基于电压矢量变换的锁相环simulink建模与仿真
本课题基于电压矢量变换的锁相环(PLL)在MATLAB2022a中进行Simulink建模与仿真。该模型通过ab坐标变换和低通滤波,实现对三相电网电压的快速准确锁相,尤其在电压不平衡条件下表现优异。系统仿真结果显示,PLL能有效提取基波正序电压分量,适用于负序电压前馈控制及双序电流环控制策略。相比传统单相PLL,该方法更稳健地应对电网不平衡和频率突变,广泛应用于电力质量监测、三相PFC电路控制及分布式发电系统的并网控制等领域。
基于四象限比例积分控制器的直流电机控制系统simulink建模与仿真
本课题基于四象限比例积分(PI)控制器,对直流电机控制系统进行Simulink建模与仿真。通过MATLAB2022a实现,系统可在四个象限内运行:正转/反转及正向/反向制动。PI控制器确保了速度和位置的精确控制,有效消除稳态误差并快速响应设定点。仿真结果显示了系统的稳定性和控制精度,适用于工业应用。
基于双PI结构FOC闭环控制的永磁同步电机控制系统simulink建模与仿真
本课题基于双PI结构的FOC闭环控制,对永磁同步电机(PMSM)进行Simulink建模与仿真。系统通过坐标变换、电流环和速度环控制及SPWM调制,实现对电机电流和速度的精确调节。使用MATLAB2022a进行建模,仿真结果显示了系统的高效性和精确性。该控制系统提高了PMSM的动态响应速度、稳态精度和效率,并降低了噪声。
升压斩波电路的simulink建模与仿真
本课题基于MATLAB2022a,利用Simulink对升压斩波电路进行建模与仿真,采用双闭环结构实现电池和电机控制。升压斩波电路通过周期性开关控制功率器件,将输入直流电压提升至更高水平,在电源供应、电机驱动及可再生能源系统中有广泛应用。仿真结果显示了其基本工作原理和性能。
|
7月前
|
算法 数据安全/隐私保护
基于pi控制的数字锁相环simulink建模与仿真
数字锁相环(DPLL)为通信与信号处理领域提供频率与相位的自动跟踪。本设计采用MATLAB 2022a实现,含详细中文注释与操作视频。核心算法基于PI控制器优化系统稳定性和精确度。由鉴相器检测相位差,经环路滤波器积分放大后,数字频率控制器调整输出频率,通过分频器形成闭环。系统锁定状态下相位误差稳定,适合高精度信号处理与同步。
|
8月前
|
算法
基于模糊PID的直流电机控制系统simulink建模与仿真
- **课题概述**: 实现了PID与模糊PID控制器的Simulink建模,对比二者的控制响应曲线。 - **系统仿真结果**: 模糊PID控制器展现出更快的收敛速度与更小的超调。 - **系统原理简介**: - **PID控制器**: 一种广泛应用的线性控制器,通过比例、积分、微分作用控制偏差。 - **模糊PID控制器**: 结合模糊逻辑与PID控制,动态调整PID参数以优化控制性能。 - **模糊化模块**: 将误差和误差变化率转换为模糊量。 - **模糊推理模块**: 根据模糊规则得出控制输出。 - **解模糊模块**: 将模糊控制输出转换为实际控制信号。
|
8月前
|
传感器
基于矢量控制的交流电机驱动simulink建模与仿真
**基于MATLAB2022a的交流电机矢量控制Simulink模型研究,展示了电机的转速、扭矩、电压和电流仿真。矢量控制利用坐标变换独立控制电机的转矩和磁通,提升动态性能和效率。通过电流采样、坐标变换、控制器设计和PWM调制实现,适用于电动汽车等领域的高效驱动。**
|
10月前
【Simulink】单相电压型全桥逆变电路仿真基础实验(方波信号)
【Simulink】单相电压型全桥逆变电路仿真基础实验(方波信号)